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Abstract  
The structure and properties of the longitudinal field in electromagnetic waves have been studied in 
the case of the superposition of plane waves, in cylindrical and spherical modes. It has been 
ascertained that the phase velocity of the longitudinal field is directed along the field vector. 
Another feature is the π/2 phase shift of the longitudinal electrical field relative to the magnetic 
field preventing the energy transport by this field. The analytical method for the theoretical 
description of the radially and azimuthally polarized beams is presented. It does not have any 
inherent contradictions. The longitudinal field is formed with the radial component of the wave 
vectors directed to the axis of the beam. Coherent superposition of two equal contradirectional 
radially or azimuthally polarized beams gives a special point in the waist. All tree field components 
including the longitudinal field equal zero at this point. It was shown that in the spherical high order 
modes, the radius of zero-field area in the sphere center increases proportional to the mode order.  
 
 
1. Introduction  

The classical papers describing the transversal laser beam structure of the open resonators 
have been well known [1]. Laguerre-Gaussian modes TEMpq (the indexes indicate the number of 
nodes in the radial and azimuthal directions) belong to the self-reproducing solutions of the wave 
equation in the cylindrical coordinates. The obtained field distributions are in good agreement with 
the experimentally observed mode structure of laser beams. The theoretical field distributions were 
calculated on the basis of the scalar wave equation and correspond to the homogenously polarized 
beams: the direction of the electric field in every point of the beam cross section remains the same.  

In early works on laser resonators, the authors already pointed out that the coherent 
superposition of two modes TEM01 can lead to the generation of modes with inhomogeneous 
polarization, such as radially, azimuthally or some others. The method of the outside cavity 
superposition of linearly polarized modes for obtaining inhomogeneously polarized modes (IPM) 
with the use of the interferometer is widespread today. 

There has been considerable interest recently in IPM, based on the perspectives of the 
application of such modes and on the appearance of new methods of their generation. Radially and 
azimuthally polarized modes, possessing axially symmetry of all parameters including polarization 
are the most promising. There are many articles discussing the practical applications of 
inhomogeneously polarized modes. Radially polarized beams have been proposed for the laser 
cutting of metals [2] and azimuthal polarization for hole punching [3]. The radially polarized beam 
appears more efficient than a linearly polarized beam in experiments on laser heating plasma, due to 
its higher resonance absorption [4]. The authors of [5, 6] proved that a radially polarized beam can 
be focused more sharply than a linearly polarized beam. These modes can be applied for trapping 
cold atoms [7], and the helical modes are proposed in diagnostic and metrological systems [8]. 

While studying IPM, special attention has been paid to the longitudinal field component, 
directed parallel to the electromagnetic wave propagation direction. In spite of the insufficient 
understanding of the physical nature of the longitudinal field, the first experiments to detect it have 
been already conducted [9, 10, 11]. There are also some suggestions about the practical use of this 
field component. The longitudinal component of an electric field for a sharply focused radially 
polarized beam can be used for the acceleration of relativistic electrons [12, 13]. 

Some problems, however, have arisen with the theoretical description of the IPM [14]. The 
reason is that the classical solutions for homogeneously polarized Laguerre-Gaussian modes [1] 



contradict the Maxwell’s equation ∇⋅E=0, which makes impossible the exact definition of 
application limits of such approach. The classical solutions contain also other limits, which reduce 
their relevance to describing inhomogeneously polarized modes. The longitudinal field is neglected 
by describing the paraxial beams. By the sharp focusing of IPM, the longitudinal field should be 
taken into account, because the longitudinal field possesses a maximum amplitude in the region, 
where the propagated field component equals to zero.  

Debye approximation is used for describing the longitudinal field at the sharp focusing 
[10,15,16,17], which allows for calculating field components at the focal plane. The numeric 
solution of Maxwell’s equations is an exact description method for electromagnetic fields [18]. In 
spite of the detail and certain advantages of such solutions, especially in complicated geometries, 
they are not quite convenient for revealing characteristic physical features of the phenomena like 
the longitudinal field in our case.   

The purpose of the present work is the study of the structure and properties of the longitudinal 
fields in the case of the superposition of plane waves, in cylindrical and spherical modes. 
Considering the electromagnetic waves in these different geometries by the use of analytical 
formulae, the general significant features of the longitudinal field are studied as an important 
element of the wave process.  

2. Superposition of the plane waves 
Some physical features, which are important for studying the cylindrical and spherical 

modes, can be considered by the vector superposition of the plane waves crossing each other at non-
zero angle (Fig. 1). The wave vectors of the interfering waves and their electric field vectors are 
assumed to lie in the x-z plane and the angle between axis z and the wave vectors equals ±θ. These 
waves are described by following expression:  
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where E0 is the field amplitude that is the same for both waves. The upper signs correspond to the 
wave with the index 1, the lower signs to the wave with index 2. The addition of the corresponding 
field components gives the formula for the resulting wave:  
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The magnetic field of the waves is directed parallel to the axis y and perpendicular to the plane of 
the drawing. The resulting magnetic field has only one component:  

( )ticosikzexp)sinkxcos(H2H 0y ω−θθ=         (2) 
The field components Ex and Hy build a running wave with the wave vector parallel to the z-

axis. Since the averaged Poynting vector, calculated for these components, does not equal zero, the 
energy is transported along the wave vector. A characteristic interferometric dependence 

)sinkxcos( θ  is considered along the axis x, obtained through the addition of the equally directed 
components Ex.  

In spite of the same structure of the formulae for Ex and Ez, the field has some differences. 
The direction of Ez is parallel to the phase velocity of this field. Another feature is the imaginary 
unit in the expression for Ez. It means the π/2 phase shift of the field Ez is relative to Hy. The 
average Poynting vector equals zero for the components Ez and Hy. No energy is transported in this 
case. This effect is attributed to the fact that the wave vector components of the interfering waves 
associated with the Ez are directed along axis x in the opposite direction.  

In the particular case θ=0, the traveling wave is obtained from formulae (1) and (2): 
( )tiikzexpE2HE 0yx ω−== ; Ez=0. For θ=90°, the formula for the standing wave is valid: 

( ) ( )tiexp)kxcos(H2H;tiexp)kxsin(iE2E;0E 0y0zx ω−=ω−==   . 
The taking into account of the arbitrary phase shift between the interfering wave does not 

change the above described qualitative features. If the electric field of the interfering waves is 



directed parallel to the axis y, the solutions will be obtained with the mutual substitution between E 
and H in formulae (1) and (2). In this case, the magnetic field has a component directed along axis 
z, which does not contribute to the energy transport. In common cases, the distribution of such 
fields can be rather complicated. Nevertheless, they appear as an important element in the wave 
processes.  

The common traveling and standing electromagnetic waves are transversal. The wave vector 
and the electric and magnetic vectors are mutually perpendicular, and the phase velocity direction 
coincides with the wave vector. But in the considered case, Ez does not participate in the energy 
transfer. The time averaged wave vector equals zero. The formula (1) for Ez includes the 
exponential term, determining the direction of the phase velocity along the components Ez. This 
field component is called the longitudinal field. 

The longitudinal field is an indispensable part practically of all wave processes, excepting 
most idealized cases like traveling or standing plane waves. According to formula (1), the field ratio 
Ex/Ez can vary from zero to infinite depending on the mutual angle of the interfering waves.  

If wave (1) composing of waves 1 and 2 (Fig.1) is directed opposite to the same wave with 
the equal amplitude, a standing wave will be obtained with a two-dimensional interfering pattern in 
the x-z plane. The corresponding expressions for Ex, Ez, Hy components can be obtained as a 
superposition of the solutions (1) and (2) written for z and –z: 
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The distributions for the fields Ex and Ez are shifted in the plane x-z. The lobes of one field 

overlap the knots of the other one. An analogical situation will be observed for the spherical modes 
in paragraph 4. Other properties of the fields Ex and Ez in standing wave (3) are equal. Both 
components possess a π/2 phase shift relative to the magnetic field and thus do not transport the 
energy. Actually, the energy currents of the traveling waves, forming the interference pattern, are 
compensated.  

The physical nature of the longitudinal field has been considered in the present paragraph by 
the use of the simple example of interfering ideal plane waves. The spatially confined longitudinal 
fields will be studied in the laser beams and spherical modes in the next paragraphs.  

3. The longitudinal field in cylindrical modes 

The radially and azimuthally polarized beams are considered as the most interesting examples 
of the inhomogeneously polarized modes by use of the analytical method without contradictions to 
Maxwell’s equations. 

It is known that the introduction of the wave equation leads to the exact formal reduction of 
the initial Maxwell’s equations. Instead of the four vector equations for the electric and magnetic 
fields, two equations are solved for the example of the magnetic field:  

,0,0k =⋅∇=+Δ HHH 2       (4) 
The components of the electric field are calculated from the solution for the magnetic field 

according to Maxwell’s equation:  
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As previously mentioned, the solution of the scalar wave equation under assumption of linear 
polarization leads to contradiction with the equation ∇⋅E=0 [14]. 

To consider the general properties of the equation system (4) concerning the longitudinal 
field, the modes with axially symmetric polarization are chosen as its solution:  



H=H(ρ,z)= Hρ(ρ,z)eρ+ Hϕ(ρ,z)eϕ+ Hz(ρ,z)ez. The equation system decays into one scalar equation 
for the azimuthal component and three other scalar equations for the radial and longitudinal fields. 
The following equation is valid for the azimuthally polarized component: 
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The direct substitution of H=Hϕ(ρ,ϕ,z)⋅eϕ in the equation system (4) leads to the conclusion about 
axially symmetry of the azimuthally polarized mode. Thus, the solution of the equation (6) has the 
form H=Hϕ(ρ,z)⋅eϕ which satisfies Maxwell’s equation ∇⋅H=0.  
In the paraxial approximation assuming  

Hϕ(ρ, z) → Hϕ(ρ, z) exp(ikz), 
the expression for the ρ-z part of the Laguerre-Gaussian modes TEMpq by q = 1:  
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The components of the electric field are calculated according to (5) by z = 0 and have the 
form:  
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The distribution of the field components Er and Hϕ are approximately equal under the 

condition: 1
w 2

0
2

2

<<
π

λ .  

The longitudinal field component Ez has some characteristic features.  
ν• The maximum of the longitudinal field locates at the beam axis, where the radial component 

equals zero.  
ν• The longitudinal field has the additional factor λ/w0 which determines its value relative to Hϕ 

and Eρ.  
ν• The imaginary unit in the expression for Ez implies the π/2 phase shift relative to the magnetic 

field. Thus, by analogy to the case with the interfering plane waves, the longitudinals do not 
participate in the energy transfer. 

The field distribution for Hϕ and Ez are shown in Fig. 1 for radially polarized modes R-
TEMp1* (p=0, 1, 2).  

The calculation method conducted for the azimuthal field is not applicable for the radial 
polarization. Actually, the form H=Hρ(ρ,z)⋅er contradicts the equation ∇⋅H=0. So there is only one 
case of the “single component” solution for magnetic field not contradicting Maxwell’s equations, 
which corresponds to the axially symmetric field with azimuthal direction Hϕ(r,z). The complete 
solution has three components Hϕ(r,z), Er(r,z), Ez(r,z). Thanks to the symmetry of Maxwell's 
equations the same statement can be made for the electric field. In this case, the solution has the 
components Eϕ(r, z), Hr(r,z), Hz(r,z). 



The presented method can be extended to the Debye approximation used for the calculation of 
the field at the focal plane of a lens [10,11,15,16]:  
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Here θ1 is the angle of aperture of the optical system and f the focal length. The Debye 
approximation describes the field only in the narrow region along the axis z at the focus. Analogue 
formulae can be obtained if azimuthal polarization is assumed for the electrical field, leading to the 
field components Eϕ(ρ, z≈0), Hρ(ρ, z≈0), Hz(ρ,z≈0). The azimuthally polarized electrical field 
Eϕ0(ρ) is taken in this case as the initial field.  

The following qualitative description of formatting the longitudinal field can be conducted on 
the base of the formulae (8). Like the case of the interfering plane waves, the wave vectors of the 
beam directed from the collecting lens to the focus can be decomposed into two components: the 
parallel and the perpendicular to the lens axis. The parallel components of the wave vectors form 
the running wave. This wave has a ring amplitude distribution and radial field component.  

The radial wave vector components, directed to the beam axis, form the longitudinal field 
with a maximum at the beam axis. The radial size of the longitudinal field is determined by 
diffraction. After the focus, the longitudinal field transforms into the diverging wave.  

The characteristic feature of the considered beams is that the running wave and the 
longitudinal field have quite different, only partly overlapping field distributions. The longitudinal 
field Ez has a maximum at the beam axis, where Er equals zero and, vice versa, Ez is relatively small 
in the maximum of the field Er. This fact reveals the possibility of independent influence on one of 
the field components. Such influence could be realised through the absorption or reflection of the 
chosen field component. 

Let us consider the case of the coherent superposition of the two directed-in-opposite 
directions equal beams using two lenses with the shared focus. Assuming a zero phase shift, the 
resulting fields components will be determined by the sum for Er component: Er(ρ, z≈0)+Er(ρ, -z≈0) 
and the subtraction for Hϕ and Ez components: Hϕ(ρ, z≈0)-Hϕ(ρ, -z≈0) and Ez(ρ, z≈0)-Ez(ρ, -z≈0) 
respectively. 

The obtained standing wave has the form:  
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It is apparent from (9) that the field components Hϕ and Ez possess knots, and Eρ has a lobe in 
the focal plane. At the same time, Eρ is always equal to zero on the beam axis. A unique situation 
appears in the point on the beam axis in the focal plane: all the free field components equal zero. 
This peculiarity will be considered in detail in the next paragraph.  

4. Longitudinal fields in spherical mode 



In spherical coordinates, the physical situation is like that in cylinder coordinates. For the 
description of a physical object, we can use a mathematical solution of the scalar wave equation in 
spherical coordinates [19-20] (for example for magnetic field) only if this solution satisfies the 
equation ∇⋅H=0. By analogy with the tasks of Part 3, the solution is chosen in the form of the 
axially symmetric azimuthally polarized mode H=Hϕ(r,θ)⋅eϕ . The equation ∇⋅H=0 is satisfied and 
the vector wave equation is reduced to the scalar:  
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The general solution of this equation has the form:  
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Here 1
nP  is an associated Legendre polynomial of the second kind, and jn the spherical Bessel 

function of the first kind. The choice of the Bessel function determines a standing wave as a 
superposition of the spherical convergent and divergent waves.  

The component of the electrical field are found according to (5):  
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Here Pn= 0
nP , C is a constant. Since the solutions represent a standing wave, both components 

possess a π/2 phase shift relative to the magnetic field. It is obvious that the radial component of the 

electrical filed Er would be a longitudinal field in the case of the spherical traveling wave.  

 The constant C can be expressed through the constant energy current Prad of the convergent 

or divergent wave at the large r: 
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where c0 is the light speed.  

Using the asymptotic formula for spherical Bessel functions:  
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Applying the formula  
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for the calculation of the integral in (11), the following expression for the constant C is obtained:  
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It is clear from the physical point of view that all three field components Hϕ, Er, Eθ should be 
equal to zero in the center of the sphere. This fact determines the choice of the mode index n = 
2, 3, 4… . The field distribution over the polar angle is described by Legendre polynomials and 
shown in Fig. 3. It should be noted that the number of petals increases with the increasing mode 
number, but the spatial localization of field components differs. The maximum of the Er is located at 
the poles, while the maximum of Hϕ and Eθ equals zero at the polar axis. 

The radial dependence of the field components Hϕ, Er, Eθ is presented in Fig. 4. The modes 
for n=2 and n=16 are so scaled to underline a quantitative feature of the shown distributions. The 
radius of the zero-field area in the centre of the sphere grows with the mode number. This behaviour 
of the field means that the mode of higher orders does not penetrate into the sphere of radius r0~nk.  

Another feature of the presented distribution is that the field Er decreases along the radius 
stronger than the components Hϕ and Eθ as determined by the multiplier 1/kr in the expression for 
Er. The integrals of the energy density over the space for the field components Hϕ and Eθ do not 
converge. On the contrary, the energy density of the radial component Er can be integrated: 
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The field Er is practically localized in a spherical envelope, whose radius and thickness 
increase with the mode number. Fig. 5 depicts this fact for the modes of different orders. The phase 
distribution of the fields Eθ and Er in the cross section of the sphere parallel to the polar axis is 
shown in Fig. 6. The spherical modes retain the phase properties of the TEM modes in the 
cylindrical coordinates, namely the relative π phase shift between the neighbour mode fragments 
separated by the zero knot. 

Fig. 7 shows the dependence of the maximum field value in a mode on the mode number for 
all three field components. The expression (12) is used for the constant C. The equal energy current 
is assumed in the calculation. Fig. 5 demonstrates well the location of the field maximum. This 
maximum for the longitudinal field is always located on the polar axis. The maximum field value 
for the longitudinal field is larger than the corresponding values for Hϕ and Eθ independent of the 
mode number. The radial coordinate rmax relating to the maximum field value in a mode can be 
determined from the simple relation krmax ≈ n. 

The solution of the wave equation in spherical coordinates be modelled experimentally by the 
use of the laser radiation. Powerful lasers are usually systems with large apertures, and their beams 
possess many mode transversal strictures. Modern diffraction mirrors with high polarization 
selectivity can force the laser to generate radially polarized high order single transverse mode [21]. 
The focusing counter propagating waves of such modes can approach the spherical mode with 
strong longitudinal fields. The exposition of spherical targets to such a longitudinal field would be 
interesting from the point of view of the radiation absorption or acceleration of the relativistic 
electrons. 

 
5. Conclusion  
The structure and properties of the longitudinal filed in electromagnetic waves has been 

studied in the case of the superposition of plane waves, in cylindrical and spherical modes. The 
longitudinal field is an indispensable part practically of all wave processes, excepting most 
idealized cases like traveling or standing plane waves.  

The analytical formulae give the general significant features of the longitudinal field. The 
ratio between the longitudinal and transversal fields can vary from zero to infinite depending on the 
mutual angle of the interfering waves. The phase velocity of the longitudinal field is directed along 



the field vector. Another feature is the π/2 phase shift of the longitudinal electrical field relative to 
the magnetic field, preventing the energy transport by this field.  

It has been shown there is a single one-component solution of the scalar wave equation in 
the cylinder and spherical coordinates satisfying Maxwell’s equations. It is the azimuthally 
polarized modes with axially symmetric field distribution. The analytical method for the theoretical 
description of the radially and azimuthally polarized beams has been presented. It does not have any 
inherent contradictions. The longitudinal field is formed with the radial component of the wave 
vectors directed to the axis of the beam. The radial size of longitudinal field is determined by 
diffraction. The longitudinal field transforms into the diverging wave after focus. 

Coherent superposition of two contradirectional beams gives a special point at the waist. All 
tree field components, including the longitudinal field, equal zero at this point. It was shown that in 
the spherical high order modes, the radius of zero-field area r0 at the sphere center increases 
proportional to the mode order r0~n/k. 

References 
1. S. Solimeno, B. Crosignani, P. DiPorto, “Guiding, Diffraction and Confinement of Optical 

Radiation” (Academic Press, New York, 1986). 

2. V. G.Niziev, A. V. Nesterov, “Influence of Beam Polarization on Laser Cutting Efficiency,” J. 
of Phys. D: Appl. Phys. 32, 1455-1461 (1999). 

3. M. Meier, H. Glur, E. Wyss, Th. Feurer, V. Romano, “Laser Microhole Drilling Using Q-
Switched Radially and Tangentially Polarized Beams,” Proc. of SPIE 6053, 313-318 (2005).  

4. A.V. Nesterov, V. G. Niziev, “Laser Beams with Axially Symmetric Polarization,” J. of Phys. 
D: Appl. Phys. 33, 1817-1822 (2000). 

5. R. Dorn, S. Quabis, And G. Leuchs, “Sharper Focus for a Radially Polarized Light Beam,” 
Phys. Rev. Lett. 91, 233901 (2003). 

6. C. J. R. Sheppard, A. Choudhury, “Annular Pupils, Radial Polarization, and Superresolution,” 
Appl. Opt. 43, 4322-4327 (2004). 

7. A.V. Bezverbny, V. G. Niziev, A. M. Tumaikin, “Dipole Traps for Neutral Atoms Formed by 
Nonuniformly Polarised Laguerre Modes,” Quantum Electronics 34, 685-689 (2004). 

8. T. I. Arsenyan, N. N. Fedotov, L. S. Kornienko, P. V. Korolenko, E. A. Kulyagina, G. V. 
Petrova, “Laser Beam with Helical Wavefront Dislocations and their Applications in the 
Diagnostical and Metrological Systems,” SPIE 2713, 453 (1995). 

9. Godai Miyaji, Noriaki Miyanaga, Koji Tsubakimoto, Keiichi Sueda, and Ken Ohbayashi 
“Intense longitudinal electric fields generated from transverse electromagnetic waves,” 
Applied Physics Letters 84, 19 (2004) p.3855-3857 

10. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, G. Leuchs, “The focus of light – theoretical 
calculations and experimental tomographic reconstruction,” Appl. Phys. B 72, 109-113 (2001) 

11. G. K. Rurimo,_ M. Schardt, S. Quabis,_ S. Malzer, Ch. Dotzler, A. Winkler, G. Leuchs, G. H. 
Döhler, D. Driscoll, M. Hanson, A. C. Gossard, S. F. Pereira. “Using a quantum well 
heterostructure to study the longitudinal and transverse electric field components of a strongly 
focused laser beam,” Journal of Applied Physics 100, 023112, 2006. 



12. S. C. Tidwell, D. H. Ford, W. D. Kimura, “Generating Radially Polarized Beams 
Interferometrically,” Appl. Opt. 29, 2234-2239 (1990). 

13. S. C. Tidwell, G. H. Kim, W. D. Kimura, “Efficient Radially Polarized Laser Beam 
Generation with a Double Interferometer,” Appl. Opt. 32, 5222-5229 (1993). 

14. Lax M, Louisell W H and Mc Knight W B 1975. “From Maxwell to paraxial wave optics,” 
Phys. Rev. A 11 1365–70  

15. A.V. Nesterov, V. G. Niziev, “Propagation Features of Beams with Axially Symmetric 
Polarization,” J. Opt. B: Quantum and Semiclassical Opt. 3, 215-219 (2001). 

16. Stamnes J J 1986. “Waves in Focal Regions The Adam Hilger Series on Optics and 
Optoelectronics” (Bristol: Institute of Physics Publishing) 

17. Yuichi Kozawa nd Shunichi Sato. “Focusing Properties of a double-ring-shaped radially 
polarized beam,” Optics Letters 31, 6, p. 820-822, 2006. 

18. A. Taflove and S.C. Hagness. “The Finite-Difference Time-Domain Method”. Computational 
Electrodynamics (Artech House, Boston, 2000). 

19. M. Abramowitz and I. Stegun eds., Handbook of Mathematical functions with Formulas, 
Graphs and Mathematical Tables, National Bureau of Standards. Washington, D. C., 1964. 

20. Riley, K.F., Hobson, M.P., and Bence, S.J. (2002). Mathematical methods for physics and 
engineering, Cambridge University Press. 

21.  A. V. Nesterov, V.G. Niziev, and V.P. Yakunin, "Generation of high-power radially polarized 
beam," J. Phys. D: Appl. Phys. 32, 2871-2875 (1999). 

 

Captions 
1. The interference of the two plane waves. Arrows show directions of the wave vectors and 

electric and magnetic fields. 
2. The calculated distributions of longitudinal components of electric field Ez and azimuthally 

directed magnetic field Hϕ in the waist for the radially polarized modes of different orders. 
3. The distribution of field components Hϕ, Er, Eθ in coordinates: azimuthal-polar angles. The 

three pictures correspond to different mode orders n.  
4. The radial part of the distribution of field components Hϕ, Er, Eθ for different mode orders n. 

The scale for two curves is not correlated. 
5. Contour type pictures of the distribution of amplitude of field components Hϕ, Er, Eθ in the 

coordinates: polar angle – radius for the modes of different orders.  
6. Contour type pictures of the distribution of the field components Eθ (left) and Er (right), 

 taking into consideration the phase. The pictures are for mode n=3.  
7. The maximum field amplitudes for the fields Hϕ, Er, Eθ as a function of the mode number.  
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