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We developed an iteration algorithm for open resonator simulation and employed it in studying the dy-
namics of mode formation. Simulations of an axially symmetrical empty resonator rely on an analytical
description of radiation diffraction from a narrow ring. Reflection of an incident wave with a specified
amplitude-phase distribution from the mirror is calculated by the Green function method. The process of
mode formation is characterized by relaxation oscillations of various frequencies depending on the re-
sonator parameters. The evolution of the relaxation oscillation amplitude can be aperiodic in nature, or it
can occur as beats of a different frequency. It has been shown that there is a consistency between the
known conditions of paraxial resonance obtained in the approximation of geometric optics and the aper-
iodic processes of evolution of relaxation oscillation amplitude in mode forming. An investigation has
been performed on the factors affecting the time of mode formation. The possibility has been shown
for multipass mode suppression and TEM10 mode generation by the use of an absorber mask on the
resonator mirror. © 2010 Optical Society of America
OCIS codes: 140.3410, 030.4070.

1. Introduction

The problem of optical resonator simulation has been
considered repeatedly, both analytically and numeri-
cally. It was the subject of fundamental work done
nearly 50 years ago [1,2]. Many known monographs
offer evidence of the systematic treatment of this pro-
blem [3–6]. A classical statement of the problem
consists in the description of the resonator modes.
Of special interest in the wide scope of practical ap-
plications are transverse modes, which determine
radiation structure in the beam cross section. The
analytical descriptions of Laguerre–Gaussian (LG)
modes for round mirrors are well known (e.g., [7]).
They have been obtained as self-reproduced solu-
tions to the scalar wave equation in the paraxial
approximation. The classical works on resonator nu-
merical simulation also reveal that any initial distri-
bution of a field is transformed to a Gaussian beam
after multiple reflections from the resonator mirrors.
Up-to-date numerical calculations generally propose

to describe the structure of laser radiation with re-
gard to the features of both the resonator and the ac-
tive medium. Despite the great number of works in
the field of open resonators, this problem cannot be
regarded as a solved one. Even in low-power cw la-
sers possessing high-quality resonators, generation
of an individual nonprincipal LG mode is rather pro-
blematic. It can be obtained experimentally only by
using special measures; see, for example, the recent
article [8]. The authors obtained the generation of
high-order modes in a laser with pulse energy of
∼10mJ, and they used a phase mask and passive
Q switch for this purpose. On the market one can
only find either main mode lasers or “multimode” la-
sers having an uncertain field structure in the beam
cross section. In most cases the conditions of laser
generation are far from ideal, so the conclusions of
classical theory are made with a high degree of
approximation.

There exists a broad class of high-power lasers fea-
turing high gain in the active medium and a low-
quality resonator. The output beam quality in these
lasers is expected to depend on the time of the trans-
verse mode formation in the resonator. If this time is
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long, there can be no hope for a quality close to the
ideal beam.

Another example is from the area of pulsed (or
pulse-periodic) lasers. As the transverse structure
of the radiation starts to be formed in each of the
pulses, it is required that the time of mode formation
in the selected resonator is compared with the laser
pulse duration for the beam quality to be generally
characterized. In present-day pulsed lasers, the pulse
duration can range from femtoseconds to millise-
conds. Both examples are indicative of the cognitive
and practical expediency of studying the process of
transverse mode formation in laser resonators.

Along with the generally accepted wave approach
to the description of transverse modes in a stable re-
sonator, interesting works are available that are con-
cerned with the peculiarities of the propagation of
rays inside the stable resonator and done in the
approximation of geometric optics. This places em-
phasis upon the relation between the wave and the
geometric optics in describing stable resonators,
upon single-pass (SP) wave LG modes and upon mul-
tipass (MP) geometric paraxial resonances. The
authors of a fundamental paper on geometric optics
of stable resonators [9] only mention this relation in
the most general of expressions. This point also has
not been touched upon in the above-cited mono-
graphs, which show a clear preference for the wave
approach.

Mention should be made of a number of experi-
mental and theoretical works devoted to “MPmodes”
[10–14]. The experiments produced specific condi-
tions for excitation in these modes. A disk of Nd3þ :
YVO4 1mm thick and several millimeters in dia-
meter was used as an active medium. The beam of
a pump laser was displaced relative to the disk axis,
and the pump area made less than 1% of the disk
area. The Fresnel number for the resonators under
study amounted to several tens and even hundreds.
The authors attribute the MP modes to the superpo-
sition of higher order ordinary modes.

This work is aimed at the investigation of the fac-
tors affecting the time of attaining the field stationary
distribution, the physical phenomena accompanying
this process for various configurations of empty reso-
nators, as well as the elucidation of the relationship
between the conclusions resulting from the geometric
and wave approaches to the analysis of stable
resonators.

2. Mathematical Model

In all the problems to be solved below, we shall re-
strict ourselves to a description of axially symmetric
solutions. This approximation is of current impor-
tance for many practical cases, as it is just under the
axial symmetry of the resonator and active medium
that the beam quality proves to be maximally high.

Our simulation algorithm is based on the Fox and
Li iteration approach [1] and applied only for axially
symmetric solutions. In this case the analytical solu-
tion of the diffraction problem for a narrow ring slit

can be used in the Green function method. A
formal justification of applying the Green function
approach to the case under consideration is given
in Appendix A.

The diffraction field from an infinitely narrow ring
of r0 radius is, for linear polarization at the distance
L ≫ r0, expressed by the formula (see Appendix A)

DELðL; θ; r0Þ ≈ 2πr0ik
eikL

L
eik

r2
0
2LJ0ðkr0θÞ: ð1Þ

Here, k is the wave vector and J0 is the zero-order
cylinder Bessel function. The formula is valid at
L ≫ r0. It is seen from the formula that, in the given
approximations, the wavefront of the diffraction field
is spherical. The phase is not dependent on the polar
angle θ; though there is an extra phase shift depend-
ing on the emitting ring radius r0.

The shapes of the surface where the initial field is
specified and of that where the diffraction field is cal-
culated can be different for convenience in calculat-
ing; see Fig. 1.

This may be a plane perpendicular to the resonator
axis at the mirror location, the surface of the mirror
itself, or the sphere of calculation. The radius of the
sphere of calculation equals the resonator length.
The amplitude-phase distribution of the field speci-
fied or obtained on any of these surfaces is readily
recalculated to the amplitude-phase distribution
on the other surface by phase correction, the ampli-
tude being retained.

For an arbitrary amplitude-phase distribution of
the initial field E0ðr0Þ , the diffraction field at dis-
tance L is calculated by performing the integration

EðL; θÞ ≈
Zrm
0
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× J0ðkr0θÞdr0: ð2Þ

This formula is written for the first iteration step, if
the initial field E0ðr0Þ) is specified on the plane (see
Fig. 1), and the diffraction field is calculated on
the spherical surface of the L radius. These circum-
stances have an influence on the form of the

Mirror surface

Plane

Calculation sphere

L

R

Fig. 1. (Color online) Explanation of the calculation procedure.
The field can be specified (or calculated) on one of the three sur-
faces shown.
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exponent multiplier in the integral. The phase
emerges from the rings of different radii (r0) at the
distance L [see (1)]; it is also related to the mirror
curvature R. For the concave mirror, the sign of R
is positive, and for the convex mirror it is negative.
The other designations are rm, mirror radius and L,
distance between the mirrors.

All the consequent iteration steps except for the
first one use the incident field specified on the sphe-
rical surface of the L radius, calculated at the pre-
vious step and give results on the same spherical
surface. Then the exponent multiplier in the inte-
grant has the following form:

exp
�
ik

r20
L

�
1 −

L
Ri

��
;

where i ¼ 1; 2 is the index specifying the resonator
mirror.

The paraxial approximation defines a large class of
practically important open resonators. In these reso-
nators, the Fresnel number F ¼ r2m

λL is evaluated in

unities. In expression (1) the phase term ∼
r20
λL and

the argument of the Bessel function are of the same
order. They vary from zero to the Fresnel number F
in the range of integrating over r0 from zero to the
mirror radius rm.

Expression (2) yields a formula for the field on the
axis after reflection of a plane wave from a mirror of
finite dimensions. In this particular case E0ðr0Þ ¼
Const:, θ ¼ 0, J0ðkr0θÞ ¼ 1, and the integral (2) is ta-
ken easily. The solution is conveniently written in the
form

jEj∼ F ·
sin y
y

; y ¼ π
2
F · ð1 − 2L=RÞ; F ¼ r2m

λL :

ð3Þ

Figure 2 illustrates the dependence of the amplitude
of the field reflected from the mirror at its axis on the
distance from the mirror. The field is at its maximum
at the focus of the mirror L ¼ R=2.

Another useful analytical formula can be derived
for the case of R ¼ 2L. Here the exponent in integral
(2) is equal to 1. Formula (4) is obtained with the field
produced on the sphere of L radius passing through
the focus of the mirror:

E∼ 2F
J1ðxÞ
x

; x ¼ 2πF r
rm

; F ¼ r2m
λL : ð4Þ

Recall that rm is the mirror radius. In the approxima-
tion of L ≫ rm, the polar angle θ has been substituted
for the radius r in the focal plane by the formula
θ ≈ r=L. The example of calculations using formula
(4) is presented in Fig. 3. The analytical expressions
similar to (4) can be derived for some other initial dis-
tributions of the field. In the focus of the mirror, for-
mulas (3) and (4) agree.

The resonator simulation based on expression (2)
has some advantages. The calculations do not re-
quire substantial computational resources and a
heavy time expense. This allows for the comparative
research of the dynamics of the mode formation in
the resonator to be carried out over a wide range
of parameters. The method can be useful in investi-
gating stable and unstable resonators with spherical,
conical [15,16], and toroidal mirrors [17]. It can be
applied for radiation either with homogeneous or ra-
dial (or azimuthal) polarization.

When calculating the integral (2), a correcting fac-
tor was introduced in each of the bounces. It was the
same for the whole run of resonator calculations and
was chosen by relying on the condition of the field
amplitude reaching a constant value or a quasi-sta-
tionary state.

3. Calculation Results

Recall the known general regularities of the field be-
havior in a stable resonator observable in our calcu-
lations as well. After multiple reflections, a resonator
with round mirrors exhibits the main LG TEM00
mode. The specified initial distribution of the field
does not affect the kind of attained stationary distri-
bution of the field. The process of mode formation is
characterized by the relaxation oscillations.

In consideration of the field evolution from the in-
itial arbitrarily given distribution, attention should
be paid to a number of factors:

• typical time of mode formation,
• amplitude of the field relaxation oscillations,
• period of the field relaxation oscillations,
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Fig. 2. (Color online) Amplitude of the field reflected from the
mirror at its axis as a function of the distance from the mirror.
Dimensionless parameters: rm · k ¼ 2:2 × 103 and R · k ¼
3:52 × 105 (k is the wave vector).
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Fig. 3. (Color online) Amplitude of the field reflected from the
mirror on the sphere of the L radius passing through the focus
of the mirror as a function of the radius. Calculated parameters:
rm · k ¼ 2 × 103, L · k ¼ 2 × 105, and R ¼ 2 · L.
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• character of the field evolution to themode, and
• type of the attained field distribution.

A. Oscillation Amplitude and Time of Mode Formation

A general idea of the speed of mode formation in the
resonator is illustrated by Fig. 4. Three cases are pre-
sented here. The parameters gi ¼ 1 − L

Ri
; i ¼ 1; 2 are

the same for all the variants, but the resonator
length is different. The time of reaching a stationary
distribution depends on Fresnel number F ¼ r2m

λL,
F ¼ 2:39; 1.36; 0.96 for the variants a, b, and c, cor-
respondingly. In Fig. 4a the field oscillations are con-
siderable, with a highly slow time evolution to the
principal mode. Increasing L, we can observe a clear
tendency toward mode formation, and in Fig. 4b, a
stationary field is attained in several bounces.

However, a comparison of various resonator
schemes proves that the above-cited Fresnel number
is unsuitable for analyzing the time of mode forma-
tion (Fig. 5). In all three examples, the Fresnel num-
ber F ¼ r2m

λL is the same while the values of mode
formation time are distinctly different. The time of
attaining a field distribution in the resonator, corre-

sponding to the principal mode, is dependent on
losses at the mirror edges, i.e., on the ratio between
the caustic radius on the mirror and the radius of the
mirror itself. The field has been calculated at r ¼
0:14 · rm (an arbitrarily chosen fixed radius). The x
axis shows the number of full resonator bounces.
Figure 5 in particular is indicative of the advantage
of a convex–concave stable resonator: the time of
mode formation here is minimal because this resona-
tor displays the maximum caustic size of the main
mode.

Figure 6 depicts the dependence of the field oscilla-
tion amplitude on thekind of initial distribution of the
field. From the variants studied, the peak amplitudes
of field fluctuations are observed in the initial field as
plane waves (Fig. 6a). If we specify the front of the in-
itial wave coinciding with the mirror surface and the
distribution of the field amplitude corresponding to
the TEM00 mode for the given resonator configura-
tion, the field fluctuations are absent. This quite rea-
sonable conclusion concerns any resonator, including
the configurations most unfavorable in terms of the
time of mode formation. The specified distribution
of the initial field is to be correlatedwith the structure
of the activemedium, and spontaneous emission from
the active medium would be well taken as the initial
one. We arrive at a quite clear recommendation that
the structure of the activemedium is best to be formed
as being close in shape to the beam caustic. Actually,
the beamquality of tubeCO2 lasers is better than that
of fast-flow lasers with transverse pumping. In tube
lasers, the bell-shaped distribution of the active med-
ium is preferable in comparisonwith theuniformgain
distribution from the point of view of the amplitude of
field fluctuations.

B. Oscillation Period and the Character of Field Amplitude
Evolution

In studying the period of field amplitude oscillations
at the mirror, we were faced with the principal pro-
blem of the relationship between the wave and the
geometric optics in the description of open resona-
tors. It is a problem of the correlation of SP wave
LG modes and MP geometric paraxial resonances.

Fig. 4. (Color online) Radius dependence of the field amplitude at
the mirror. The column of figures to the right shows the number of
bounces. Dimensionless parameters: rm · k ¼ 3 × 103 and R1 ¼
R2 ¼ 2 · L. Two groups of curves correspond to different resonator
lengths: a, L ¼ 200 · rm and b, L ¼ 500 · rm. The initial field ampli-
tude is uniform; the front is flat.
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Fig. 5. (Color online) Field amplitude on the second mirror at
r ¼ 0:14 · rm. Parameters: rm · k ¼ 2900 andL ¼ 195 · rm. The initi-
al field amplitude is uniform; the front is flat. a, R1 ¼ R2 ¼ 2:5 · L,
b, R1 ¼ 2:5 · L, R2 ¼ ∞, and c R1 ¼ 2:5 · L, R2 ¼ −2:5 · L.
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The results of our calculations contain the qualita-
tive effects of both approaches.We observe both para-
xial resonances (at the corresponding configurations
of resonators) and a SP lowest mode that is formed as
a result of multiple reflections.

The period of field oscillations and the character of
mode formation in the resonator differ sharply de-
pending on the resonator parameters (Figs. 7 and 8).
The field amplitude evolution can be aperiodic or
manifest itself as beats of various frequencies. The
parameters of resonators where beats are lacking
in Fig. 7a conform with the condition of paraxial re-
sonance derived in the context of resonator described
by the methods of geometric optics [9]:

g1 · g2 ¼ 1þ cos θ
2

; θ ¼ 2π K
N

; 0 ≤ K ≤ N=2;

ð5Þ

where N is the number of resonator round trips re-
quired to form a closed ray trajectory. gi ¼ 1 − L

Ri
; i ¼

1; 2 are the parameters of the stability diagram of the
open resonators.

Beats take place at the resonator parameters
slightly different from the conditions of paraxial re-
sonance. The beat frequency (Figs. 7b and 7c) is re-
lated to the value of the mismatch.

The results of numerical calculations done in the
context of the wave approach (Fig. 8) are uniquely in-
dicative of the presence of paraxial resonance effects
predicted in the geometric optics. The cases are illu-
strated when the oscillation period of the field corre-
sponds to 3, 5, and 7 round trips of the resonator.

This phenomenon can be explained in the follow-
ing way. The conclusions concerning paraxial reso-
nances are applicable to the rays located at any
distance from the axis; this is seen from formula
(5) of paraxial resonance that involves no coordi-
nates. However, there exist the boundaries of applic-

ability of geometric consideration. A relatively large
value of rðF ¼ r2=λL > 1Þ permits paraxial reso-
nances to be observed, but at small rðF ≤ 1Þ, where
the principal TEM00 mode is localized, the laws of
geometric optics are inapplicable.

The important features of this effect should be
noted. The resonances mentioned above can be ob-
served independently on the mirror radius rm and
the initial field. These two factors can only influence
the amplitude of oscillations or the time relaxation,
but not the oscillation period.

The current results are expected to begin experi-
mental research in this field. Two principal experi-
ments that proved the existence of MP modes and
paraxial resonances in the stationary state were per-
formed in [9] by Ramsay and Degnan. In the first ex-
periment, they measured the transparency of the
passive resonator by changing its length. They ob-
tained all the paraxial resonances predicted by the
theory. The second experiment was performed on a
CO2 laser with a variable resonator length. One
manifestation of the paraxial resonances is apparent
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Fig. 6. (Color online) Evolution of the field amplitude on the
second mirror at r ¼ 0:14 · rm. Parameters: rm · k ¼ 2900,
L ¼ 2:12 · rm, and R1 ¼ R2 ¼ 2:6 · L. The curves are for different
initial field distributions. For a–c, the initial wavefront is flat.
a, The field amplitude is uniform. b, The distribution is a Bessel
function ∼J0ð2:405 · r=rmÞ. c, The distribution is a Gaussian func-
tion ∼ expð−r2=w2

0Þ, w0=rm ¼ 0:413. d, The field distribution is the
same as in the previous case. The wavefront coincides with the
mirror surface.

0

1

E
,a

rb
.u

n.

0.2

0.8

0.2

0.8

Number of bounces
0 50 100

(a)

(b)

(c)

Fig. 7. (Color online) Evolution of the field amplitude on the
second mirror at r ¼ 0:14 · rm. Parameters: rm · k ¼ 2900 and
L ¼ 195 · rm. The second mirror is flat. The initial field amplitude
is uniform; the front is flat. a, R1 ¼ 2:0 · L, b, R1 ¼ 2:1 · L, and c,
R1 ¼ 2:3 · L.
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Fig. 8. (Color online) Examples of paraxial resonances. The field
amplitude at the mirror center as a function of the number of
bounces. The points on the curve correspond to consequent reflec-
tions from the mirror. a, Seven-pass resonance at g1 ¼ g2 ¼ 0:222.
b, Five-pass resonance at g1 ¼ g2 ¼ 0:309. c, Five-pass resonance
at g1 ¼ g2 ¼ 0:809. d, Three-pass resonance at g1 ¼ g2 ¼ 0:5.
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in the power profiles of hole-coupled lasers. Mea-
sured output power against mirror separation for a
hole-coupled CO2 laser shows dips in the power.
These dips occur at the paraxial resonance positions
given by the corresponding formulas.

C. Laguerre–Gaussian Nonzero Modes

The problem of high-order LG modes is of consider-
able interest. The accepted classification of lasers
in the world market (both low power, e.g., He–Ne la-
sers, and high power, such as CO2 lasers) with regard
to mode composition is strange, as only two variants
are usually offered: single-mode (the main TEM00
mode) lasers or multimode lasers. The situation is
clarified by Fig. 9, which depicts the results of the cal-
culation for a specified resonator configuration using
the initial radiation that ideally corresponds to the
TEM10 mode both in the front shape and the field dis-
tribution. In this ideal case, the TEM10 mode persists,
and no relaxation oscillations are observed.

Nevertheless, any deviations of the initial field
from the ideal one cause a cardinal change in the si-
tuation. In Fig. 9b, the front of the initial field is only
varied as against Fig. 9a; now it is flat. The initial
distribution appropriate for the TEM10 mode is “de-
composed” and evolves to the principal TEM00 mode
via relaxation oscillations. The character of field evo-
lution shown in Fig. 9b is qualitatively retained at
other differences from the ideal case (Fig. 9a), such as
with the variations in w0. For Fig. 9a, the value of w0
is derived from the known formulas as a function of
the resonator parameters. Mention is made that the
time of mode formation depends on diffraction losses
at the mirror edges and, hence, on the mirror radius.
On reducing the mirror radius, the above-cited qua-
litative behavior of the field is retained.

The reason for this behavior of the field is that with
the Fresnel number F ¼ r2=λL exceeding unity, the
SP higher order LG modes cannot compete with
the MP modes of the paraxial resonances resulting
from geometric optics. The MP modes are known
not to show a certain distribution of field in the cross
section, so their formation does not take much time
when compared with LG modes. On the other hand,
the similar typical size of the field along the mirror

radius SP LG modes exhibits higher diffraction
losses at the mirror edges than the MP modes of geo-
metric optics. The first ones have the same, compara-
tively high losses at the mirror edges on each pass.
The radius of the MP modes is changed cyclically;
therefore, the MP averaged losses of these modes
are lower. The exception is the principal TEM00
mode, in the scope of which a consideration in terms
of the beam is not applicable.

The results of calculation suggest that it is not cor-
rect to consider output radiation of a nonprincipal
mode laser to be “multimode.” Actually, any distribu-
tion of the field amplitude in the waist (if the phase is
constant) can be formally expanded into a series of
real orthogonal LG functions. It does not mean, how-
ever, that any laser beam can be presented as a super-
position of LG TEMpq modes. The complex functions
describing LG modes are not orthogonal at the non-
zero phase shift between two functions. We also can-
not guarantee that the beam of the real “multimode
laser” has a waist with the constant phase over the
beam cross section.

In the most practical cases, the real beam is not
finally formed either as the single-mode LG beam or
as the coherent superposition of low-order LGmodes.
One possible reason is low resonator quality; another
reason is not enough time for mode formation in
pulsed lasers. In both cases, we cannot hope that
the phase is constant in the waist so we cannot even
follow the procedure described above.

Actually, the laser beam in a “multimode laser”
contains a considerable portion of “MP geometric
modes” with an uncertain structure of the field in
the cross section. The portion of this component is
governed by the Fresnel number. The deviation from
the paraxial resonance does not bring about a critical
change in the situation; generation of a proper LG
mode of the order above zero (or a superposition of
low-order modes) is not possible. The mode of oscilla-
tion suggests that a deviation from the resonance is
responsible for simultaneous excitation of two or
more closely spaced resonances of lower quality.

At the same time, it would be desirable in many
cases to realize the generation of a specific nonzero
LG mode displaying the predicted features, instead
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Fig. 9. (Color online) Effect of the kind of the initial field distribution upon the mode formation. Temporal evolution of the field at the
center of the mirror a, b, radial distribution of the field in the c, d, steady state mode. Parameters: rm · k ¼ 2450, L ¼ 231 · rm, and
g1 ¼ g2 ¼ 0:309. a, The initial wave has a wavefront matching the mirror surface and the field distribution in the form of the TEM10

mode at w0 ¼ 0:445 · rm. b, The same parameters as in a, except for the wavefront; here it is flat.
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of “multimode” generation. This can be effectively
achieved (for at least the low-order modes) by apply-
ing a mask to the resonator mirror. Entering an ab-
sorbing annular zone on the mirrors in our numerical
experiments resulted in a suppression of MP modes
and in the generation of a TEM10 mode (Fig. 10). The
radius of the absorbing ring equaled that of the zero
field of the TEM10 mode, and the area of the ring
comprised less than 1% of the mirror area. In the ab-
sence of the absorbing ring, relaxation oscillations
gave rise to formation of the principal TEM00 mode,
the time of achieving the stationary filled distribu-
tion being considerably longer.

4. Conclusion

One-dimensional resonator simulation for the axially
symmetric field distribution has been developed. It is
intended to be used in studying the dynamics of field
distribution formation in empty resonators. The
model employs an analytical description of radiation
diffraction from a narrow ring slit. Reflection of an
incident wave with a specified amplitude-phase dis-
tribution from the mirror is calculated by the Green
function method.

The process of mode formation is shown to have the
different character of relaxation oscillations, depend-
ing on the resonator parameters. The evolution of the
relaxation oscillation amplitude can be aperiodic or
occur as beating. The wave-based resonator simula-
tion reveals “paraxial resonances” predicted in [9]
by the methods of ray optics. It has been shown that
the conditions of paraxial resonance are matched by
aperiodic processes of evolution of relaxation oscilla-
tion amplitude in the course of mode formation.
Deviations of the resonator parameters from the con-
ditions of paraxial resonance cause a qualitative
change in the character of oscillations. Themonotoni-
cally damping amplitude of the field oscillations gives
place to damped beats. Their period is dependent on
the value of the resonator parameter deviation from
the conditions of “paraxial resonance.” Some para-
meters of the resonator are accompanied by more
complex oscillations close to chaotic ones. In this case,
oscillations involve two or several “paraxial reso-
nance modes,” their quality being comparable for
the given resonator configuration.

The time of mode formation is defined by the quan-
tity of diffraction losses at the mirror edges. The re-

laxation oscillation amplitude is governed by the
field initial distribution.

An efficient means of TEM10 mode generation, the
principal mode and MP geometric mode suppression,
is employing a mask on the resonator mirror. It is
made as a ring of zero reflection and placed in the
area of the TEM10 mode zero field. In such a resona-
tor, the TEM10 mode is formed much faster than the
stationary generation is reached in the absence of an
absorbing mask on the mirror.

We would call attention once again to the advan-
tages of employing convex–concave stable resonators
showing the best parameters for the resonator filling
with the caustic of the principal mode [3,18]. To this,
one can add a fast evolution of the initial field to the
mode (Fig. 5c). The problem of parallel beam extrac-
tion from the resonator containing spherical mirrors
is solved by fitting a curvature of the outer antireflec-
tive surface of the output mirror. With regard to its
“increased sensitivity” to misalignment, this problem
is exaggerated. It is evident from the simplest com-
parative estimations by the formulas of [3] for the
resonators with the similar volumes of the mode.

The results of this paper should be taken into ac-
count in operating low-quality stable resonators in
high-power cw lasers and in pulsed lasers.

Appendix A: Wave Reflection from the Round Mirror of
Finite Dimensions

Deriving an integral for calculation of a reflected
wave resulting from radiation incidence on the round
mirror of finite dimensions presented here is per-
formed for an axially symmetric case and in paraxial
approximation.

Assume that a distribution of the initial field of lin-
ear polarization E0ðρ0;φ0; z0Þ is specified on the flat
surface of a round mirror S0ðρ0;φ0Þ. Radiation is direc-
ted onto the mirror along its axis. The scalar Kirchh-
off integral for the electric field can be written in its
general form as

EðrÞ ¼
Z2π

0

Zr

0

ðGðjr − r0jÞ ∂

∂z0
E0ðρ0;φ0; z0Þ

− E0ðρ0;φ0; z0Þ ∂

∂z0
Gðjr − r0jÞÞρ0 · dφ0 · dr0;
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Fig. 10. (Color online) Effect of the absorbing mask at the mirror upon mode formation. a, Temporal evolution of the field at the center of
the mirror and b, radial distribution of the field in the steady state mode. Parameters: rm · k ¼ 2450, L ¼ 231 · rm, and g1 ¼ g2 ¼ 0:309. The
initial field amplitude is uniform; the front is flat. The radius of the absorbing ring is w1=

ffiffiffi
2

p ¼ 0:31 · rm; it coincides with the zero field
location for the TEM10 mode. The area of the absorbing ring comprises 1% of that of the mirror.
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where rðr;φ; θÞ is the radius vector directed from the
origin of coordinates (at the mirror center) to the
point of diffraction field calculation, ρ0 and φ0 are the
polar coordinates on the mirror surface, r0ðρ0;φ0Þ is
the radius vector on the mirror surface directed from
the origin of coordinates to the emitting point, and
G ¼ eikjr−r0 j

jr−r0 j is the field of the point source.
Consider now the axially symmetric problem. The

initial field is given as E0ðρ0;φ0; z0Þ ¼ E0ðρ0Þ · eikz0.
Then ∂

∂z0 E
0ðρ0; z0Þjz0¼0 ¼ ikE0ðρ0Þ. For the wave zone

(kr ≫ 1) ∂

∂z0 G ≈ ikG ∂

∂z0 jr − r0j, and the integral will
take the form

E ¼ ik
Z2π

0

Zrm
0

GE0ðρ0Þ ·
�
1 −

∂

∂z0
jr − r0j

�
ρ0 · dφ0 · dρ0:

The conclusion is made for the resonators with the
mirror radii rm much smaller than the distance be-
tween them. Thus, both the dimensions of the emit-
ting zone and the size of the diffraction pattern
calculation region are much less than the distance
at which the diffraction pattern is calculated. In view
of this, we can write

jr − r0j ≈ r

�
1 −

x · x0 þ y · y0

r2
þ x02 þ y02

2 · r2

�

¼ r

�
1 −

ρ0
r
sin θ cosðφ − φ0Þ þ ρ02

2 · r2

�
:

Here (x; y; x0; y0 ≪ r), ρ0
r ≪ 1, sin θ ≪ 1. So in further

transformations of integration elements, jr − r0j can
be substituted for r everywhere except for the expo-
nent in G that describes the phase. Substituting
∂

∂z0 jr − r0jz0¼0 ≈ − z
r ¼ − cos θ ≈ −1;, we can write

further:

EðrÞ ¼ 2ik
Zrm
0

Z2π

0

GE0ðρ0Þ · ρ0 · dφ0 · dρ0

¼ 2ik
Zrm
0

E0ðρ0Þ
Z2π

0

eikjr−r0 j

jr − r0j ρ
0 · dφ0 · dρ0

≈ 2ik
eikr

r

Zrm
0

E0ðρ0Þ
Z2π

0

e−ikρ
0 sin θ cosðφ−φ0Þeik

ρ02
2r ρ0 · dφ0

· dρ0

¼ 2ik
eikr

r

Zrm
0

E0ðρ0Þeik
ρ02
2r J0ðkρ0 sin θÞρ0dρ0:

Here, a known formula J0ðxÞ ¼ 1
π ·

R π
0 e

−ix cos tdt is
used, rm is the mirror radius.

The derived expression can be interpreted in terms
of the Green function approach, where the formula
for diffraction from a narrow ring slit of r0 radius
has the form

DELðL; θ; r0Þ ≈ 2πr0ik
eikL

L
eik

r2
0
2LJ0ðkr0θÞ:

Here the denotation r for the distance between the
aperture and the observation point is changed for
L (the distance between the resonator mirrors).
For any axially symmetric amplitude-phase distribu-
tion of the incident field E0ðr0Þ, the diffraction field is
calculated using the integral

EðL; θÞ∼
Zrm
0

r0E0ðr0ÞDELðL; θ; r0Þ exp
�
−ik

r20
R

�
dr0:

A multiplier having the form of an exponent de-
scribes an additional phase shift related to the mir-
ror curvature R. This phase shift emerges as incident
radiation E0ðr0Þ reflected from the mirror.

The formula of diffraction from a narrow ring at
azimuthal (radial) polarization is obtained in a simi-
lar way [19]:

DEAðL; θ; r0Þ ≈ 2πr0ik
eikL

L
eik

r2
0
2LJ1ðkr0θÞ:

Calculation of the diffraction field of the whole mir-
ror will require the same integral with a substitution
of DELðL; θ; r0Þ for DEAðL; θ; r0Þ.

The authors express their thanks to M. D.
Khomenko for his contribution in performing
calculations.
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