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A large class of diffraction problems can be solved on the basis of the Huygens principle. However, methods
of solving diffraction problems based on this principle exhibit narrow boundaries of applicability. The goal of
the present work is to offer a relatively simple physically based and mathematically strict “dipole wave” vector
theory of nonparaxial diffraction of electromagnetic radiation which allows analytical solutions of typical
diffraction problems. The suggested theory logically retains the wave approach used in the Kirchhoff method
and does not exhibit strict limitations to applicability inherent in the Kirchhoff integral. The diffraction prob-
lem is solved by using the Hertz vector in the Kirchhoff integral instead of the field vector. The method
efficiency is illustrated in several examples. Analytical solutions of diffraction base problems have been
obtained for linearly polarized radiation on an infinite slit and on various-shaped holes at an arbitrary angle of
incidence and polarization. It was shown the possibility of vector addition particular solutions to obtain
diffraction patterns from several holes. The diffraction of radiation with azimuthal and radial directions of
polarization on a ring slit is also considered. The main qualitative feature of the obtained solutions is the
presence of “poles” one or two points of zero field in the diffraction pattern which are superimposed on the
common system of light and dark fringes. The poles are located along electrical field vector directions. The
vector analytical formulas describing the propagation of some laser beams in the free space have been obtained
too. The solutions of the diffractive problems satisfy the Maxwell equations and the reciprocity principle.
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I. INTRODUCTION

The most common and strictest approach of solving dif-
fraction problems is the solution of the vector Maxwell equa-
tions with corresponding boundary conditions. Due to its
commonness, this approach is, in principle, applicable to any
diffraction problem. Physical and mathematical methods of
such an approach are described in many textbooks and
monographs, for example, Refs.f1–6g. However, major
mathematical difficulties with this method restrict the practi-
cal use of such solutions. So even formally strict solutions
for diffraction on a round holef7g cannot practically be used
because of the bad convergence of the series in the form in
which it is presentedf3,8g. For solving concrete problems
they usually apply physical simplifications, approximate cal-
culations, and numerical methods.

A number of methods of roughing solving diffraction
problems on the basis of the Huygens principle are known.
The semiempirical approaches used in these methods impose
strict limits on their applicability.

The Kirchhoff method for electromagnetic field descrip-
tion is the most famous. It uses the purely wave approach to
solving diffraction problems. Derivation of the Kirchhoff in-
tegral is based on the wave equation and strict mathematical
logic f2,4,9g. The Kirchhoff integral permits the diffraction
field to be calculated using the field specified at some sur-
face. Nevertheless, the area of the Kirchhoff integral appli-
cability is rather narrow. The reason for these limitations is
purely physical in nature and is located in the statement of

the problem. The Kirchhoff integral is derived from two sca-
lar wave equations, one of them being applied for the Green
function and the other for a field propagating in free space.
The scalar wave equation for the field does not contain any
information on changes of field direction in space. The equa-
tion for the Green function gives a formal solution for the
simplest spherical wave from a point source with uniform
field direction. However, existence of such a wave is impos-
sible due to the transverse nature of the electromagnetic
field.

It is known that the Kirchhoff-Kottler integral is the gen-
eralization of the Kirchhoff method for the case of vector
fields f2,4,9g. The common idea consists of the scalar Kirch-
hoff integral application to components of the field and in
further vector adding of the obtained solutions. Characteriz-
ing this empirical approach, the authors of a classical mono-
graphf9g point out that it does not have any physical inter-
pretation and the solutions obtained on its basis do not
satisfy the Maxwell equation divE=0. All the drawbacks of
the scalar approach mentioned above are extended to the
Kirchhoff-Kottler integral automatically. Therefore solutions
on this base are approximate; they are correct in the narrow
zone of diffraction pattern description. The authors of Ref.
f10g considered in detail the famous paradox of classic
paraxial approximation in the study of modes in spherical
laser resonators. The solution for plane polarized mode has
spherical wave front. This zero order approximation is con-
tradictory to exact Maxwell equations. The first-order field is
found to be a longitudinal field.

We shall also refer to the so-called electrodynamical for-
mulation of the Huygens principle suggested by Kottlerf9g.
The initial point of this theory is the introduction of “equiva-*Email address: niziev@yahoo.com
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lent surface currents” found from the field specified on the
diaphragm.

Kottler suggestedf11–13g the introduction of an addi-
tional contoursalong the hole edged integral into the solu-
tion. Kottler explained the necessity of this introduction by
the presence of electric and magnetic charges distributed
along the hole contour. Here we attempt to elucidate the field
distribution in the hole and thus expand the method applica-
bility. Nevertheless, this integral introduction cannot “com-
pensate” for the shortcomings inherent in the Kirchhoff
method itself, i.e., in the scalar integral and in vector gener-
alization.

This paper is aimed at the creation of a physically justified
and mathematically correct vector theory of diffraction that
would use the logic of the Kirchhoff method and provide for
the analytical solutions of several basic diffraction problems.
The scope of this theory is broader than the applicability of
the classical approach. The constraint on small solid angles,
typical of the scalar approach, is not placed in this case.
Although tasks with nontrivial boundary conditions at the
aperture are not considered in the present paper, the proposed
method using these conditionssunlike the scalar Kirchhoff
integrald allows correct solutions of the diffraction task at
small apertures. Some specific tasks on propagation of laser
beams in space are solved. The obtained solutions are also
valid for small radii of the initial field distribution leading to
the large anglesnonparaxiald diffraction pattern.

A. Dipole-wave theory of diffraction

A mathematically correct and physically justified gener-
alization of the Kirchhoff method for the diffraction vector
theory is presented by the approach that employs not the
field in the Kirchhoff method, but the polarization potential,
or Hertz vectorZ f2g. This approach is used, for example, in
the antenna theory. As the fields found by the formula

E = = 3 = 3 Z, H = ik = 3 Z s1d

automatically satisfy the Maxwell equation divE=0, the in-
ner contradiction inherent in the common Kirchhoff method
is lacking in this approach.

The expression for the electromagnetic field of emitting
dipole p=p0 exps−ivtd is derived from the solution of the
wave equation with the source in the form of dipolef2g

Z = P0
e−ivt+ikr

r
. s2d

The polarization potential of the dipole wave is parallel top0
and is transferred by a spherical wave. One of the two scalar
equations used in the Kirchhoff method, i.e., the nonhomo-
geneous equation for the Green’s function, can be quite ex-
actly physically interpreted when written forZ. It describes
the emission field of a real point source of electromagnetic
radiation. Substituting Eq.s2d into Eq. s1d, in the wave zone
skr@1d we obtain a dipole waveEr =0, Eu=Hw=−k2Z sinu.

Noting that the dipole wave polarization potential retains
its direction at different points of space, we can use the scalar
equations applied toZ in the case of linearly polarized radia-
tion falling on the aperture. Here the Kirchhoff scalar inte-

gral written forZ contains the vector information on the field
of the diffraction pattern.

So, evaluation of the integral forZ is possible without any
approximations due to vector function inhomogeneity, and
the expressions for vector fieldsE andH can be obtained by
simple differentiation. This approach is naturally extended
for the general case of arbitrary distribution of the field di-
rection on the aperturef14g.

The basis for solving the vector problem of diffraction
under linear polarization of incident radiation is provided by
the Kirchhoff integral written for the Hertz vector:

Zsr d =E
S8

fGsn · = dZ0 − Z0sn · = GdgdS8. s3d

Here,Z0sr 8d is the Hertz vector distribution on the given
surfaceS8, Zsr d is the Hertz vector at the observation point,
n is a unit normal to the given field surface on the aperture,
andGsr ,r 8d is the Green’s function of the scalar wave equa-
tion.

For a widespread case of a plane polarized wave on the
apertureZ0sr8d and E0sr8d on S8 surface are related by a
simple expressionE0sr 8d=−k2Z0sr 8d. Allowing for this, Eq.
s3d can be represented as

Zsr d = − e0
1

k2E
S8
FG

d

dn
E0 − E0

d

dn
GGdS8, s4d

wheree0 is a unit vector in the field direction andd/dn is a
derivative in the directionn, d/dn=n ·=.

The technology of diffraction field calculation is now re-
duced to evaluation of the integral in expressions4d, writing
of Z in vector form with the same unit vector as theE0 field,
and to calculation of the field itself by formulass1d. The
solution, obtained for the plane incident waves4d, permits
the problem to be solved in the general case also.

We may conclude that the considered methodology of
solving the diffraction problems presents some “physical”
method of scalarization. In the general case of a three-
dimensional vector field, the vector problem of diffraction
must be solved for linearly polarized radiation with regard to
each of the components. As stated above, this problem is
reduced to the scalar integral by using the Hertz vector.
These solutions satisfy the Maxwell equations, so the vectors
of diffraction fields from all the components can be added.

We now discuss the applicability limitations for the con-
sidered method. A field with nondisturbed edges is employed
on the aperture as a specified one. This causes a “physical”
restriction for the typical size of the holea@l. The usual
mathematical limitations in calculating diffraction integrals
exist for the wave zonekr@1 and for the hole sizeka@1,
the latter being less strict as opposed to the limitation men-
tioned above. Herek is the wave vector,a is the typical
aperture size, andr is the distance from the aperture edge to
the observation point. In all the below problems, a more
stringent approximation ofr @a is taken, which permits the
analytical relationships to be derived. Combining the limita-
tions for r anda, we can write in our calculationsr @a@l.

A key condition largely affecting the possibility of this
method of practical applicability is the transformation of the
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initial distribution of the field on the hole to the Hertz vector
initial distribution. The general approach suitable for any
given field distribution is hardly possible in this case. Below,
the problems are solved which cover some particular cases:
plane linearly polarized wave, and radially and azimuthally
polarized radiation. A more general case can be also men-
tioned when the initial field shows linear polarization and the
field amplitude distribution is such that everywhere
=E0'E0. Here we can use the decomposition of the field
amplitude on the aperture into plane waves, and the field
direction coinciding withE0 can be ascribed to the scalar
components of decomposition. The general solution of the
problem is obtained by integrating with respect to the wave
vector of the solution obtained for a plane wave.

Section V is concerned with a way of solving the prob-
lems of diffraction from several holes that employ the addi-
tivity of mathematical transformations used in the method
under consideration. The propagation of laser beams in space
is considered in the last section.

We offer several examples to illustrate the application of
the suggested method. In all the cases the surface covering
the apertureS8 is taken to be flat inx-y coordinates, and the
vectorn in formulass3d ands4d is directed along axisz. The
planex-z is the plane of radiation incidence. In diffraction
from the slit or various form holes, two directions of field are
possiblesFig. 1d: in the plane of radiation incidencesad and
perpendicular to itsbd. On this basis, solutions for any field
direction can be obtained.

B. Diffraction of radiation from an infinite slit

Let us consider a plane linearly polarized wave incident to
the slit sFig. 1d in the planex-z at the angle ofu0 to the z
axis:

E0 = e0E0e
ik·r = e0E0e

ikx8 sin u0eikz8 cosu0.

The time factore−ivt is omitted for brevity ande0 is a unit
vector in the field direction. The vectorZ s4d has the same
direction in all the points that coincides withE0 direction.
The scalar integrals4d is evaluated by a standard procedure.
In our case, substitutingE0 andG, we can write it as

Zsrd = −
1

k2E0E
S8

eikx8 sin u0

3FG
]

]z8
eikz8 cosu0 − eikz8 cosu0

]

]z8
GGdS8.

In the two-dimensional case considered here, the Green’s
function is expressed through the asymptotic approximation
of the Hankel function of the first kind of the zeroth order:

Gskur − r8ud <
Î2
Îp

e−ip/4 eikur−r8u

Îkur − r8u
,

ur − r8u = Îsx − x8d2 + sz− z8d2,

wherer is the radius vector directed to the point under con-
sideration. Having performed the differentiation under the
integral and settingz8=0, in the wave zonekr@1 and for the
caseDx!r we obtain

Z̄ = − i
Î2
Îp

e−ip/4S̄
ei r̄

Îr̄
scosu0 + cosud

sinx

x
,

x = Dxssinu − sinu0d. s5d

Here we passed to the coordinatesr andu. The dimension-
less parameters have also been entered:

Z̄ = Z
k2

E0
, S̄= 2kDx, Dx = kDx, r̄ = kr.

This approximation is essentially different from that of
Kirchhoff, as it does not impose any applicability limitations
on the angle and contains the information on field direction
at different points depending on the direction of the initial
field. Expressions5d has been derived from the scalar inte-
gral and is valid for any initial field direction. It goes without
saying that the expressions for the diffraction fields will dif-
fer according to the initial field direction, and henceZ.

If the field E0 is perpendicular to the plane of incidence
sE0iyd, we haveZ =Zsx,zdj in the vector form. The calcula-
tion of the field from formulas1d was carried out in Cartesian
coordinates.

The formulas for evaluating the magnetic and electric
fields s1d are considerably simplified. The procedure of tak-
ing the derivatives is also rather simple if we consider their
order of smallness from the different multipliers in formula
s5d. Because of the factork=2p /l, the derivative of the
exponential with respect to the coordinate is maximum on
the order of magnitude. The same factor appears in the de-
rivative of x, but this time with the coefficientDx/r that is
small on the order of magnitude. That is why the second
derivatives ofZ with respect to the coordinates, which are
needed in calculation ofE, have a very simple form

]

]x
Z = − ik

x

r
Z,

]

]z
Z = − ik

z

r
Z.

Then, allowing for Eq.s5d we rewrite the formula forE in
the final form

FIG. 1. Two possible directions of field on the aperture at non-
zero angle of incidence:sad field vector in plane of incidence;sbd
field vector perpendicular to plane of incidence.
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E = Zj = − i
Î2
Îp

e−ip/4E0S̄
ei r̄

Îr̄
scosu0 + cosud

sinx

x
j , s6d

x = Dxssinu − sinu0d, S̄= 2kDx, Dx = kDx, r̄ = kr.

Expressions6d, quite understandably, is identical to that
obtained from the usual scalar Kirchhoff integral. Only in
this unique case the usual method gives a solution satisfying
the equation divE=0, since the diffraction field has every-
where the same direction alongy as the initial field, i.e., it
only possesses one component, and this component is not
dependent ony by virtue of the problem two-dimensionality.

Accordingly, for the fieldE0 in the plane of incidence
sE0'yd, the polarization potential has the formZ =Zsx,zd
3si cosu0−k sinu0d, and formulas1d yields the following

expression for the electric fieldE=E0 cossu−u0dZ̄eu. So fi-
nally we obtain

E = Z cossu − u0deu = − i
Î2
Îp

e−ip/4E0S̄
ei r̄

Îr̄
scosu0 + cosud

3cossu − u0d
sinx

x
eu, s7d

x = Dxssinu − sinu0d, S̄= 2kDx, Dx = kDx,

r̄ = kr, eu = i cosu − j sinu.

The direction of the diffracted field found from formula
s7d is illustrated in Fig. 2. In any case, the formulas give a
correct, perpendicular to the wave vector, direction of the

field vector, and exhibit a slight difference in field amplitude
for the two considered polarizations of the beam. With dif-
fraction from a slit cut in a nontransparent screen, we cannot
formally place strong emphasis on the qualitative differences
in the diffraction pattern at large angles where cossu−u0d
=0.

In view of the above stated the approximation of a non-
disturbed field on the aperture confines the hole size from
below to, at least, several wavelengths. The intensity of the
diffraction pattern therewith sharply falls when the polar
angle is increased, and at large angles the field is practically
zero with any polarization. However, if the slit is regarded as
an element of wave front not restricted by a screen, the limi-
tation on the slit size can be removed. In this case there is no
need to account for the edge conditions in consideration of
the field diffracted “along the screen” owing to its absence.
The general propagation pattern for a wave with the specified
distribution atz=0 will be found as the result of vector su-
perposition of the fields diffracted from the front individual
regions obtained by summing or integrating the correspond-
ing expressions. The qualitative peculiarities of diffraction
for any kind polarization may be essential here.

Figure 3 illustrates the distributions of field amplitude cal-
culated by formulass14d and s15d for an angle of incidence
30°. A characteristic feature of the caseE0'y is the presence
of an additional zero-field point atu=u0−p /2 fsee formula
s7dg. This “pole” is located along the field direction at 60°.

Based on the obtained expressionss6d and s7d, it is pos-
sible to revise the formula for the simplest diffraction grating
formed by parallel slits cut in a nontransparent screen. It is
known that the formula for the light that had passed through
such a grating has two terms: a term for single slit diffraction

FIG. 2. Scheme, designations,
and pattern of linearly polarized
light diffraction from an infinite
slit, synthesized by calculation.
The diffraction field direction is il-
lustrated bysad andsbd at any field
direction on the slit. The angle of
incidence is zero.

FIG. 3. Diffraction of a linearly polarized
field on an infinite slit at two directions of polar-
ization and with slit width 12l. The angle of in-
cidence is 30°.
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and an expression related to the collective effect of diffrac-
tion from many slits. The formula for this grating will then
take into account the polarization of radiation. If there is
some distribution of the given field amplitude, the diffraction
pattern can be calculated through the Green’s function, by
the solution.

In an arbitrary distribution of the specified fieldE0
=E0xi +E0yj +E0zk, it must be resolved into two components
E0x−z=E0xi +E0zk andE0y=E0yj . Making use of expressions
for the infinitely small slit, we can write the general solution
to the problem as

E = − ik
Î2
Îp

e−ip/4 eikr

Îkr
scosu0 + cosud

3Feu cossu0 − udE
x1

x2

Eox−zsx0deikssin u0−sin udx0dx0

+ eyE
x1

x2

Eoysx0deikssin u0−sin udx0dx0G . s8d

Consider the example u0=0, E0y=0, E0x−z
=E0 cosspx0/2ad. The specified field is different from zero
for −a,x0, +a. A simple calculation of the integrals8d
gives the following formula for the diffraction field in this
case as well:

E = − ikaE0
4Î2
Îp3

e−ip/4 eikr

Îkr
s1 + cosudeu cossud

3
cosskasinud

1 − 16
a2

l2 sinu2

.

C. Diffraction of linearly polarized radiation from holes

The initial integral for calculatingZ is written for the
three-dimensional problem

Z = − iE0E
S8

eikx8 sin u0
eikur−r8u

kur − r8u
Scosu0 +

z

ur − r8u
DdS8.

The Green’s function here has the form

G =
eikur−r8u

kur − r8u
.

The formulas for approximated calculations in terms ofu are
identical to the stated above decomposition withr substitut-
ing for r, though the formula foru has another form as inte-
grating is now performed with respect to two coordinates:

u =
xx8 + yy8

x2 + y2 + z2 =
xx8 + yy8

r2 = ux + uy.

As a result, we arrive at the integral

Z = −
i

k
E0s1 + cosu cosu0d

eikr

r
Isw,ud, s9d

Isw,ud =E
S8

eikx8 sin u0e−ikrudS8.

While taking the integral in Cartesian coordinates, we
must write

u = sinu cosw
x8

r
+ sinu sinw

y8

r
.

The integral takes the form

Isw,ud =E
S8
E eikssin u0−sin u coswdx8e−ik sin u sin wy8dx8dy8.

s10d

On taking the integral in polar coordinates, the substitution
must be made:

u =
r8

r
sinuscosw cosw8 + sinw sinw8d

=
r8

r
sinu cossw − w8d, x8 = r8 cosw8.

Then the following expression for the integral is derived:

Isw,ud =E
S8
E eikr8fsin u0 cosw8−sin u cosw cosw8−sin u sin w sin w8g

3dr8dw8. s11d

Thus, the Hertz vector is found from formulas9d with an
integral similar to those of Eq.s10d or s11d. Recall that the
direction of the Hertz vector is the same as the field direction
on the hole.

In calculation of the field by formulas1d, consider two
main directions of the field falling on the aperture: in the
plane of incidence and perpendicular to it. Here, as well as in
the case of a slit, the procedure of taking the derivatives in
calculation of the rotor is not tedious if we take into account
the smallness of the derivatives taken from the multipliers in
formula s9d.

The final expression for the field can be written as fol-
lows:

E = − iE0
eir̄

r̄
scosu0 + cosudIsw,udqsw,ud, s12d

where r̄ =kr and Isw ,ud is found from formulas10d or s11d
and specified by the hole shape, and the form of the vector
function qsw ,ud depends on the field direction on the hole
ssee Table Id.

The solution for any direction of the field vector on the
aperture can result from the vector addition of the solutions
for E0iy and E0'y. In the case of a rectangular hole, the
field is found from the formula

E = − iE0S̄
eir̄

r̄
scosu0 + cosud

sinxa

xa

sinxb

xb
qsw,ud, s13d

xa = āssinu cosw − sinu0d, xb = b̄ sinu sinw,
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S̄0 = 4āb̄, ā = ka, b̄ = kb, r̄ = kr,

where 2a and 2b are dimensions of rectangular hole alongx
andz axes, correspondingly.

For a rombolic hole obtaining the expression for the field

E = − iE0S̄
eir̄

r̄
scosu0 + cosud5 sin

a + b

2

a + b

2

sin
a − b

2

a − b

2
6qsw,ud,

s14d

a = kcssinu0 − sinu coswd, b = kdsinu sinw,

S̄= 2k2cd.

2c and 2d are diagonals of rombolic hole alongx andz axes,
correspondingly.

In the case of a circular hole, we should start with the
integral s11d. We deduce the following expressions for the
Hertz vectorZ and the electric fieldE:

E = − 2iE0S̄
eir̄

r̄
scosu0 + cosud

J1sr̄Md
r̄0M

qsw,ud, s15d

M = Îssinu0 − sinu coswd2 + ssinu sinwd2,

S̄0 = pr̄0
2, r̄ = kr, r̄0 = kr0.

r is the radius of a hole.
Having prescribedE0=E0dsr8−r0d we can deduce the for-

mula for the Green’s function that would permit the diffrac-
tion field to be calculated from the specified front with an
arbitrary radial distribution of the field. We restrict ourselves
to the case where the angle of incidence is zero.

If the given field is directed along they axis, the expres-
sion for the Green’s function for electric field takes the form

GEsyd = iE0sk22pr0ds1 + cosud
eikr

kr
J0skr0 sinud

3feu cosu sinw + ew coswg. s16d

When the given field is parallel to thex axis, we obtain

GEsxd = iE0sk22pr0ds1 + cosud
eikr

kr
J0skr0 sinud

3feu cosu cosw − ew sinwg. s17d

With an arbitrary distribution of the specified fieldE0
=E0xi +E0yj using expressionss16d and s17d, the solution of
the problem can be written as

Esyd = is1 + cosud
eir̄

r̄
feu cosu sinw + ew coswg

3E
0

`

2pr̄0E0ysr̄0dJ0sr̄0 sinuddr̄0, s18d

Esxd = is1 + cosud
eir̄

r̄
feu cosu cosw − ew sinwg

3E
0

`

2pr̄0E0xsr̄0dJ0sr̄0 sinuddr̄0. s19d

The usual definitionsr̄ =kr, r̄0=kr0 are used here. The
diffraction fieldsEsyd, Esxd from the specified field compo-
nentsE0y andE0x must be added with regard to the compo-
nents. The resulting diffraction field possesses two compo-
nents, polar and azimuthal.

D. Discussion of calculation results for diffraction from holes

The results obtained feature the “poles” in the diffraction
pattern, i.e., the points of zero field, located along theE0
direction. ForE0iy, two such points can be seen, their coor-
dinates beingw= ±p /2, u=p /2. With E0'y there exists one
“pole” sw=p ,u=p /2−u0d in the observation hemisphere
sFig. 4d.

The emergence of “poles” is assigned to the expression
qsu ,wd, and its form does not depend on the hole shape.
Figure 5 depicts the distribution of field amplitude over the

TABLE I. The vector part of solutions of diffraction tasks for two directions ofE0.

Field E0 Vector Z Vector qsw ,ud

E0iy Z =Z·ey eu cosu sinw+ew cosw

E0'y Z =Zsex cosu0−ez sinu0d eussinu sinu0+cosu cosw cosu0d−ew sinw cosu0

FIG. 4. Emergence of a “diffractive pole,” a point of zero field,
at oblique incidence of radiation on the slit, and withE0 located in
the incidence plane.
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hemisphereu, w in diffraction from the circular and square
holes. The angle of incidence is 15°. The distinctions of dif-
fraction patterns for different polarization directions, at
rather large holes, are not visually distinguishable.

The formula for light diffraction from rectangular and cir-
cular holes, derived from the electrodynamical formulation
of the Huygens principle, gives no description of the “poles”
related to the direction of theE0 field vector. The formulas
derived in this paper are different from the known ones. They
not only offer the qualitative features of diffraction pattern,
but also provide for quantitative refinement of the field am-
plitude distribution over the diffraction pattern. Exact quan-
titative information is of great importance in this case, such
as, for instance, the fact that the direction of maximumum of
the diffraction field is distinct fromu0. The differenceu0
−um depends on the angle of incidence and can reach several
degrees.

The solutions of some diffraction problems obtained by
the method of electrodynamical formulation of Huygens
principle are not in agreement with the reciprocity principle.
This discrepancy is typical of the problems where the surface
currents are prescribed by the formulaj =sc/2pdn3H0.
Concerning the outlined method, all the above solutions are
consistent with the reciprocity principle. Withw=0; p, the
anglesu andu0 are interchangeable.

E. Superposition of solutions at the diffraction
from several holes

The vector solutions obtained for the diffraction from in-
dividual holes allow the diffraction pattern to be described in
the presence of several holes. This can be performed through
vector addition of the fields arriving at the specified point
from different holes. The parametersspolarization, ampli-
tude, relative phase shift, and angles of incidenced of the
waves falling on the holes can be either identical or different.

Formally saying, allowing for the features of the em-
ployed mathematical operations, we can indicate that the op-
eratorE=LsE0d is capable of additivity. This approach can

be used in resolving the initial field into the vector compo-
nents, though bearing in mind that a linearly polarized initial
field yields the diffraction field that is variously directed at
different observation points. The diffraction from several
holes can be considered in a similar way.

Primarily, the results must be generalized in the case of a
random location of the hole in the screen relative to the ori-
gin of the coordinates. It gives an additional multiplier in the
solution, describing phase distribution in the observation
hemisphere. This phase distribution is associated with the
asymmetrical location of the hole in the initial coordinate
system. This multiplier has the form

Fsw,u,u0,x0,y0d = eikfx0ssin u0−sin u coswd−y0 sin u sin wg. s20d

It does not depend on the hole shape and incident radiation
polarization and is entered into all the finite formulas. So, for
example, formulas15d for the circular hole displaced from
the origin byx0, y0 takes the form

E = − 2iE0S̄
eir̄

r̄
eivteiCscosu0 + cosudFsw,u,u0,x0,y0d

3
J1sr̄0Md

r̄0M
qsw,ud. s21d

Here, for generality, we reproduced the time multiplier
and entered a random phase shiftC that allows for the dif-
ference in phases of the beams falling on different holes.
Generally, in addition to solutions of the diffraction field on
the observation hemisphere not only being linearly polarized,
they also have circular or elliptical polarization in different
points.

If the holes are of the same size and symmetrical about
the origin, the resultant formula is simplified, and the phase
of the resulting field will be constant on the observation
hemisphere. By way of example, consider the diffraction
from six circular holes evenly spaced along the circle ofR
radius. The holes undergo the action of the plane wave. The
general solution has the form

E = − 2iE0S̄
eir̄

r̄
eivtscosu0 + cosudsF1 + F2 + F3d

3
J1sr̄0Md

r̄0M
qsw,ud. s22d

F1 corresponds to the first pair of holes located along thex
axis:

F1 = 2 coshkRssinu0 − sinu coswdj,

F2 andF3 correspond to the other two pairs of holes

F2,3= 2 cosHkFR

2
ssinu0 − sinu coswd ±

Î3R

2
sinu sinwGJ .

Figure 6 presents the results of calculating the diffraction of
a plane polarized wave from six circular holes, performed
with formula s22d.

For the two holes located along thex axis atR distance
from the origin, the formulas21d includes

FIG. 5. Distribution of field amplitude under linearly polarized
radiation diffraction from round and square holes in the coordinate
system of polar and azimuthal angles. The round hole radius and the
square side make 6l. The angle of incidence is 15°. The main peak
amplitude is normalized to a unit; the peaks in the figure are cut off
at the level of 0.3.
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Fsw,u,u0,x0,y0d = 2 coshkRssinu0 − sinu coswdj

for the case of zero phase shift and

Fsw,u,u0,x0,y0d = − 2i sinhkRssinu0 − sinu coswdj,

when the field oscillations on the holes are out of phase. The
diffraction field for these two cases is shown in Fig. 7.

The following figuresFig. 8d illustrates the calculation of
the field amplitude distribution for diffraction from two cir-
cular holes, when radiation falls on them at different angles
±a. From the two figures, fora=5° stopd and a=15° sbot-
tomd, how the diffraction pattern evolves with the increase of
the incidence angle can be inferred. Analyzing the case sche-
matically presented in Fig. 8, we let the planes of radiation
falling on the holes coincide, the angles of incidence being
equal but differing in sign.

If the vectors of the fields falling on the holes lie in the
plane of radiation incidencesthe field vectors being paralleld,
the diffraction fields at any point away from both the holes

have the same direction, but differ in amplitude and phase. It
can be convincingly indicated that the resulting diffraction
field is linearly polarized at any point.

If the field vectors falling on the holes are in the plane of
radiation incidence, they are not parallel and form the angle
2a. In this case, the diffraction fields at any point away from
the two holes are different not only in amplitude and phase,
but in direction as well. The resulting fields diffracted from
the two holes can be linearly or elliptically polarized at any
point of the observation hemisphere.

F. Diffraction of azimuthally and radially polarized radiation
from a circular slit

Modes with azimuthal and radial polarization are well
known in the theory of waveguides and open resonators. Let
us consider diffraction of light with this polarization from a
circular slit. We shall restrict ourselves to the case of a zero
angle of incidenceu0=0.

For an azimuthally polarized radiation assuming that
within the circular apertureZ0=Z0e

ikzew, it is readily shown
by directly substituting into Eq.s6d that the relationE0sr8d
=−k2Z0sr 8d holds here, too. The calculation of the Hertz vec-
tor is reduced to the integral

Z =
i

k
E0s1 + cosud

eikr

r
E

r8
E

0

2p

nwe−ikr8 sin u cossw−w8dr8dw8dr8.

Having writtennw=−nx sinw+ny cosw, we arrive at the sca-
lar integrals

Zx = − nx
i

k
E0s1 + cosud

eikr

r

3E
r8
E

0

2p

sinw8 e−ikr8 sin u cossw−w8dr8dw8dr8,

FIG. 6. Diffraction of plane polarized wave from six round
holes. The field amplitude lies in the coordinates of azimuthal and
polar anglessFig. 5d. The hole radius isr0=5l. The distance isR
=20l. Angle of incidence is zero. The main peak amplitude is nor-
malized to a unit; the peak in the figure is cut off at the level of 0.1.

FIG. 7. Diffraction of plane polarized wave from two round
holes. The field amplitude lies in the coordinates of azimuthal and
polar anglessFig. 5d. The hole radius isr0=5l. The distance isR
=20l. Angle of incidence is zero. The main peak amplitude is nor-
malized to a unit: the peaks in the figure are cut off at the level of
0.2.

FIG. 8. Diffraction from two round holes. The field amplitude
lies in the coordinates of azimuthal and polar anglessFig. 5d. The
hole radius isr0=3l. The distance from the origin to hole center is
R=5l. The angle of incidence on the holes is ±a sa=5° at the top,
a=15° at the bottomd.
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Zy = ny
i

k
E0s1 + cosud

eikr

r

3E
r8
E

0

2p

cosw8 e−ikr8 sin u cossw−w8dr8dw8dr8.

Using further the known transformationsfA1g and represent-
ing the initial field asE0=E0dsr8−r0d, we obtain for the
Hertz vector

GZ = ewE02pr0s1 + cosud
eikr

kr
J1skr0 sinud.

In this case, the field is conveniently calculated by formula
s1d in spherical coordinates. It takes the form

GE = ewk2E02pr0s1 + cosud
eikr

kr
J1skr0 sinud. s23d

Along the polar axis, foru=0, the field is zero. The mag-
nitude of the field along the screen, foru=p /2, depends on
the slit radius and may or may not be zerosFig. 9d. The
general solution forE0sr0d is determined by the integral

E = ews1 + cosud
eir̄

r̄
E

0

`

2pr̄0E0sr̄0dJ1sr̄0 sinuddr̄0,

where, as usual,r̄ =kr, r̄0=kr0.
In the case of radially polarized radiation the solution for

the Hertz vector has a similar form:

GZ = E0s2pr0dS1 +
z

Îr2 + z2D eikÎr2+z2

kÎr2 + z2
J1Skr0

r

Îr2 + z2Der.

The above form has been adapted to calculation of the
electric field s6d in the cylindrical coordinate system. The
calculation results in the following formula:

GE = k2E02pr0
eikr

kr
s1 + cosudcosuJ1sr̄0 sinud

3Hcosuer + F i

r̄ sinu
− sinuGezJ .

For convenience, we have here introduced natural notation in
terms ofr =Îr2+z2 and the polar angleu measured from the
vertical axis.

It is convenient to decompose the obtained expression
into two parts, a field in the meridional direction and a field
along thez axis. The latter has a phase shift ofp /2:

GEu = k2E02pr0
eir̄

r̄
s1 + cosudcosuJ1skr0 sinudeu,

s24d

GEz = ik2 r̄0

r̄
E02pr0

eikr

kr
s1 + cosudcosu

J1skr0 sinud
kr0 sinu

ez.

s25d

The field distribution from formulass24d ands25d is given
in Fig. 10. The purely longitudinal component of the field
s25d is small in magnitudesdue to the factorr0/ rd, but the
maximum of the field is on the axis, where the meridional
components24d is zero. In addition, the longitudinal compo-
nent is phase shifted byp /2 relative to the meridional field.
The magnetic field possesses only an azimuthal component
and “forms” a radial wave vector of the spherical wave to-
gether with the in-phase meridional component of the elec-
tric field. As for the field longitudinal component, it exhibits
a p /2 phase shift with respect to the magnetic field, thus the
time-averaged wave vector, related to this component, is
zero.

The general solution forE0sr0d is found from the formulas

Eu = eu

eir̄

r̄
s1 + cosudcosuE

0

`

2pr̄0E0sr̄0dJ1sr̄0 sinuddr̄0,

Ez = iez
r̄0

r̄

eir̄

r̄
s1 + cosudcosuE

0

`

2pr̄0E0sr̄0d
J1sr̄0 sinud

r̄0 sinu
dr0.

Undimensional notationsr̄ =kr, r̄0=kr0 are applied here.
The above conclusions with regard to the meridional and
longitudinalsalong thez axisd components of the field are to
full measure extended to the general case.

G. Propagation of laser beams in space

Now we illustrate on several examples the applicability of
the Green function expressions to calculate of the formulas
describing the propagation of some laser beams in space. The

FIG. 9. Diffraction of an azimuthally polar-
ized field on a narrow ring slit at two values of
slit radius. Angle of incidence is zero.
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general method to solve these problems is as follows. It is
suggested that the field distribution over the laser beam waist
swave front is flat and phase is constantd is known. Employ-
ing the expressions for the corresponding cases, we calculate
the diffraction field at large distancessas against the typical
size of the specified fieldd that governs the law beam propa-
gation. In accordance with the general approach, the ob-
tained solutions have a vector form, and they do not have the
paraxiality restriction that is typical of the classical formulas
of Gaussian beam propagation.

Consider the principal mode of Laguerre-Gaussian beams.
Take for certainty that the specified field is linearly polarized
and the field vector is directed along they axis. It is required
that the field distribution corresponding to this mode be sub-
stituted in formulas18d:

Ea =Î 2

p

1

w0
e−R0

2
, R0 = r/w0

and the integral using the known formulasA2d be taken as

E = iÎ 2

p

1

w0
s1 + cosud

eir̄

r̄
feu cosu sinw + ew coswg

3E
0

`

2pr̄0e
−r̄0

2/k2w0
2
J0sr̄0 sinuddr̄0.

The simple transformations yield the final expression giv-
ing a vector description of the Gaussian beam propagation in
spherical coordinates:

E = E0s1 + cosud
eir̄

r̄
feu cosu sinw

+ ew coswge−sw̄0
2/4dsin2 u, r̄ = kr,

w̄0 = kw0.

The vector formulas for propagation of beams having azi-
muthal and radial polarization can be obtained in quite a
similar way. The specified field distribution for the lower
TEM01* mode is described in these cases by the formula

Ea =Î 2

p

1

w0
sÎ2R0de−R0

2
, R0 = r/w0.

For the field having azimuthal polarization, we must ap-
ply formula s23d, substitute the expression for the field into
it, and perform an analytical taking of the integral. We obtain
the final formula

E = ewE0
eir̄

r̄
s1 + cosudsinue−sw̄0

2/4dsin2 u, r̄ = kr, w̄0 = kw0.

Consider the specified field having radial polarization.
Having performed a similar calculation employing formulas
s24d and s25d, we come to the following expressions for the
field meridional and longitudinal components:

Eu = euE0
eir̄

r̄
s1 + cosudcosu sinue−sw̄0

2/4dsin2 u,

Ez = eziE0
eir̄

r̄

w̄0

r̄
s1 + cosudcosue−sw̄0

2/4dsin2 u.

Both in this case and in considering diffraction of radially
polarized radiation through the circular slit, the field longitu-
dinal component is small compared with the meridional field,
but the maximum of this field is located at the axis where the
field meridional component is zero. The longitudinal compo-
nent of the field is also shifted byp /2 with relation to the
meridional field.

The last example concerns the propagation of Bessel
beams. Consider the case of the limited aperture of the initial
field described by the Bessel zero-order function. A circle
presents the aperture boundary. The given, but arbitrary num-
ber of zeros of the Bessel function, is brought into the aper-
ture: Ea,J0sanr / rnd, r ø rn. Here rn is the beam aperture
radius including all zeros the Bessel function up tonth. The
numerical factoran is consistent with the argument of the
Bessel function at this zeror =rn. Let the specified field have
linear polarization and be directed along they axis. As in the
case of a Gaussian beam, we should apply formulas18d, but
substitute the Bessel function in the integral. Here also the
integral is analytically taken by using the formulasA3d. The
calculation results in the formula

FIG. 10. Diffraction of a radially polarized
field on a narrow ring slitsr0=2ld. The left pic-
ture is the field component directed along merid-
ian Eu, the right picture is the field longitudinal
component directed alongz axis Ez. The longitu-
dinal and meridian components of the field are
displaced in phase byp /2. The relative scale of
the two curves is not in agreement.
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E = E0s1 + cosud
eir̄

r̄
feu cosu sinw + ew coswg

35
sand2

sand2 − sr̄n sinud2 J0sr̄n sinud,

an

2
J1sand if r̄n sinu → an,6

r̄ = kr, r̄n = kra.

At the large distances ofr @ rn the character of Bessel
beam propagation alongr differs not at all from the propa-
gation of other beams. The features obtained in Ref.f15g for
such beams do not take place in this case. The discussed
general case involves the propagation of the waveguide laser
principal mode in free space. This mode is described by the
zero-order Bessel function and is limited by the tube walls in
accordance with the first zero of Bessel function. In this case,
n=0, a0=2.405.

II. CONCLUSION

Consideration has been given to the method of solving
diffraction tasks that is based on the Hertz vector application
in the Kirchhoff integral. For this approach, there are no
stringent limitations to applicability, inherent in the scalar
Kirchhoff integral and its vector generalization written for
the field. The method is physically sequential and math-
ematically correct, and does not exhibit inner contradictions;
it presents a full vector approach and is technically simple.
The search for a solution involves two stages. The first stage,
calculation of the Hertz vector, is equivalent to taking the
diffraction integral of the well-known class. The second
stage consists in field calculation. Here, the operation of tak-
ing the curl is essentially simplified, if the order of summand
smallness is allowed for taking the derivatives. The solution
is dependent on polarization, but at any direction of linear
polarization on the aperture it can be derived from the two

base solutions for the vectors of the initial field being parallel
and perpendicular to the plane of incidence. On plane wave
incidence at a long distance from the aperture, the analytical
vector expressions have been obtained for solving basic tasks
of diffraction. The problems of linearly polarized radiation
diffraction on an infinite slit, on holes of different forms, and
on several holes have been considered. The problems of dif-
fraction of azimuthally and radially polarized radiation on a
ring slit were also studied. A qualitative feature of the ob-
tained solutions is the presence of “poles,” points of zero
field which are superimposed on the common diffraction pat-
tern consisting of light and dark fringes. The vector analyti-
cal formulas describing propagation of some laser beams in
free space are obtained by the Green’s function method.
These solutions do not have paraxial approximation restric-
tions. The solutions satisfy the Maxwell equations and the
reciprocity principle.

APPENDIX

Analytically taken integrals used for gettingssearchingd
solutions of diffractive tasks.

E
0

2p

sinsnbdexpfit cossb − gdgdb = 2pinJnstdsinsngd,

E
0

2p

cossnbdexpfit cossb − gdgdb = 2pinJnstdcossngd,

sA1d

E
0

`

xn+1e−ax2
Jnsbxddx=

bn

s2adn+1expS−
b2

4a
D , sA2d

E
0

rn

rJ0sardJ0sbrddr =
arnJ1sarndJ0sbrnd

a2 − b2 . sA3d
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