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Abstract. The general solution of the wave equation for the axially symmetric polarized (ASP) 
beams consists of two independent solutions: azimuthally polarized beam and beam with 
longitudinal and radial field components. Maximum of the longitudinal field is at the beam axis 
where the transverse component equals to zero. In spite of the longitudinal component is maximum 
in the waist it doesn’t contribute to beam divergence here, therefore the wave front of ASP-beams is 
flat in the focal plane. The ASP-beams are free from polarization aberrations, which are inherent for 
linearly polarized beams passing through a lens with large annular apertures, and these beams are 
prospective for experiments on obtaining “diffraction free” beams. The formulae and their analysis 
for electromagnetic field in the case of sharp focusing of ASP-beams in Debye approximation are 
presented. 
 

1. Introduction 
Beams with axially symmetric polarization (ASP) are of special interest as from the theoretical 
viewpoint and from the viewpoint of their applications. The full axial symmetry of these beams 
(including amplitude, phase and polarization) makes them optimum in many applications: light 
transmission by metallic waveguides, laser materials processing, experiments on inertial fusion and 
others [1-4]. An effective method for generating such beams by using a polarization selective intra-
cavity mirror was demonstrated in paper [5]. According to this, the task of describing the properties 
of axially symmetric polarized beams such as propagation, diffraction and focusing becomes actual. 
The main feature of ASP-beams is that the angle between the electric vector at a point and the 
radius directed to this point is constant over the beam cross-section. Well known examples are 
radially and azimuthally polarized beams. The authors of paper [6] showed that the symmetry of the 
intensity distribution of ASP-beams is a direct consequence of their polarization symmetry. 
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Fig. 1. Schematic view of relative location of the electromagnetic field and the wave vector k for a 

beam with r-z directed field. 

The usual scalar wave equation is derived from the vector wave equation in assumption of 
homogeneous polarization distribution over the beam cross-section. In this case one neglects a 
longitudinal component of the electric field naturally connected with the beam divergence in such 
approach. In the case of ASP-beams the maximum amplitude is on the axis where the transversal 
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component (E or H) of the field equals to zero. Therefore there is no reason to neglect the 
longitudinal field here.  
The aim of the paper is analytical investigating features of propagation of ASP-beams for creating 
comparatively full and logical description of such beams in different appearances: paraxial 
propagation, sharp focusing, diffraction. 

 (a)                                   (b)
 

Fig. 2. The helical (a) and conventional (b) modes with circular polarization. Arrows show instant 
direction of electric vector and distribution of its phase over the cross-section. The tail area 
of the arrows shows direction of rotation. 

2. General approach to ASP-beams 
 The equation for “slowly varying amplitude of monochromatic axially symmetric polarized 
field (without multiplier exp(ikz)) has the form  
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E = Er⋅nr + Eϕ⋅nϕ + Ez⋅nz. 

The field components Er, Eϕ, Ez are independent on ϕ and are functions of r and z. Taking into 
account the expressions ∂nr /∂ϕ = -nϕ, ∂nϕ/∂ϕ = nr (the other derivatives for the unit vectors equal to 
zero) we get from (1) the following equations for the field components  
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Maxwell equation in the form  
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has to add to the system (2). Thus, the general solution for an ASP-beam consists of two 
independent solutions for an azimuthally polarized beam (2b) and for a polarized beam with radial 
and longitudinal components of field:  

E = k1⋅Eϕ⋅nϕ + k2⋅(Er⋅nr + Ez⋅nz), 
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where k1 and k2 are arbitrary complex coefficients. Figure 1 illustrates a beam with r-z electric field 
components (k1=0). The beams with azimuthal, radial or intermediate direction of polarization are 
obtained by zero phase shift ∆ϕ between two solutions (2, 3) and different magnitudes of k1 and k2. 
If k1=k2 and ∆ϕ=π/2, the beam is circularly polarized and the phase of electrical vector 
equals to the azimuthal angle. It is helical mode [7] with circular polarization (Figure 2a). It is clear 
that this beam penetrating through the λ/4 retarder becomes a classical linearly polarized mode. In 
the contrary to the helical mode with circular polarization the radially polarized beam with 
“normal” phase distribution over the cross section is shown on Figure 2b. 
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Fig. 3. Radial distribution of longitudinal components Hz (filled region) and radial Hr (curve), 

obtained from (5). 

 The physical reason of existence of two independent solutions is that the azimuthally 
polarized beam retains its state of polarization but the ratio of longitudinal and transverse 
components of field changes.  
The authors of [8] considered in details the famous paradox of classic paraxial approximation in the 
study of modes in spherical laser resonators. The solution for plane polarized mode has spherical 
wavefront. This zero order approximation contradicts to exact Maxwell equations. The first-order 
field is found to be a longitudinal field. 
In the contrary to plane polarization in our case for ASP beams we can contend that: 
a) 
b) 
c) 

 The solutions with or without longitudinal component of field are separated each other. 
 It is true for common case without paraxial restriction. 
 Both solutions can be found by the same methods. We should start calculation from the 
azimuthally directed field E or H, and then calculate radial or longitudinal components of H or E 
respectively. 

3. Self-similar solutions for ASP-beams in paraxial approximation 
 The self-similar solutions of the equation (2b) in paraxial approximation 
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are well known Laguerre-Gauss beams TEMp1*. The components of electric and magnetic field of 
the beam TEM01* can be calculated: 
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One can calculate the amplitude of magnetic vector and its direction. Note that Hz has the phase 
shift π/2 relative to Eϕ in cross-section Z=0. Therefore the time averaged wave vector has no radial 
component over this cross-section and the wave front is flat. Figure 3 shows the vector H 
distribution in the waist. Maximum values of magnetic vector Hz and Hr is achieved at R0=0 and 
R0= 2/1  respectively. Their ratio is of order of λ/w0: 
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It is evident that these results are valid by mutual substitute of E and H. The self-similar solutions 
(4) can be also resonator modes.  

4. Huygens-Fresnel integral for ASP-beams 
We consider the ASP-beams with axially symmetric intensity distribution. The solution of equation 
(4) in general case is obtained by the method of separation of variables and can be expressed by the 
integral: 
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Here σ2 is the constant of separation. 
We consider δ-ring source at z=0:  
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we find A(σ2) and obtain from (7) the expression  
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After integrating according to  
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the Green function acquires the form: 
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Equation (1) describes the slow amplitude without the factor exp(ikz), as introduced in (8). Thus, 
the distribution of azimuthally polarized beam in paraxial approximation is given by the integral  
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Another more complicated method of obtaining expression (8) based on vector superposition of two 
scalar solutions of wave equations for two transverse coordinates, was used in paper [9].  
In the case of r-z directed field the electric vector in cross-section z=0 is given by:  
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Calculating the magnetic component from 
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and applying formulae (8) and (9) for azimuthally directed field we obtain the solution for the 
vector H and therefore for E. 

5. Fraunhofer diffraction on a ring slit 
One can solve the task of Fraunhofer diffraction of azimuthally polarized beams on a ring slit on the 
base of the Green function (8). By analogy with [10], the intensity distribution in the far field 
expressed by vectorial angle θ is given by 
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Here R and ∆R are the radius and the width of the radiating ring in the cross section z=0, dΩ is the 
element of solid angle.  
For comparison, the formula for diffraction of a linearly polarized beam on a ring slit in the same 
notation has the form  
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The “diffraction free” beams were reported to be obtained experimentally [11]. A linearly polarized 
beam passed the ring slit and then the lens positioned at the focal distance from the slit in that 
experiment. After passing the lens the beam acquired a Bessel field distribution, cut by lens 
aperture. Degree of approximation to the ideal Bessel function in this case is dependent on lens 
aperture. But the larger are lens aperture, the larger are polarization aberrations. Using ASP-beams 
in this scheme one can remove this disadvantage and provide “diffraction free” beam with intensity 
distribution in the form of first order Bessel function.  
As for the same diffraction of the beam with r-z direction of field, the intensity distribution of the 
radial component has also the form (10) and the longitudinal component is described by the 
expression (11) with the additional factor 1/(k⋅R)2. 

6. Debye approximation for sharp focusing of ASP-beams 
The task of sharp focusing is outside the above discussed paraxial approximation. It is 

usually solved with the Debye method. According to this method, the field distribution in the focal 
region is formed by wave rays, converging inside the cone restricted by the aperture of the optical 
system. The phase of the wave ray is described by multiplier exp(ikr),  

k=(-k⋅sinθ⋅cosβ, -k⋅sinθ⋅sinβ,-k⋅cosα), 
r=(r⋅sinθ⋅cosϕ, r⋅sinθ⋅sinϕ, r⋅cosθ).  
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where k is the ray vector and r is radius-vector in coordinate system connected to the focus. The 
polarization direction is perpendicular to k and is determined relative to the angle between k and 
the optical lens axis.  

Ez
max/Er

max

3

2

1

0
 0              1              2              3              4      f/w0  

Fig. 4. The ratio of maximum amplitudes of longitudinal and transverse electrical fields in the focal 
plane versus the focal length in Debye approximation. 

 
According to [12,13], there is the following expression for the electric vector in the general case:  
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Here θ1 is the angle of semiaperture of the optical system, p(α,β) is the unit vector which coincides 
with the direction of E in the region extending from the lens to the focal plane, A(α) is the 
coefficient connected with the beam distribution A0(ρ) incident upon the focusing system and its 
focal length f. A(α)=A0(f sinα)⋅ αcos  for aplanatic system. 

The unit vector p(α, β) in the case of ASP-beams can be expressed in the form eiβ for azimuthal 
and ei(β+π/2) for r-z types of polarization. Taking into account this representation, the expressions for 
vector E in the focal region are given by: 
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for radial polarization, where v and u are the optical coordinates: 

v = k⋅r⋅sinθ⋅sinθ1 = k⋅ρ⋅sinθ1,  u = k⋅r⋅cosθ⋅sin2θ1 = k⋅z⋅σιν2θ1. 
We used for derivation of these expressions the integral: 
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The field with electric vector parallel to the optical lens axis with maximum on this axis appears in 
the case of radially polarized beam.  
 Figure 4 illustrates the ratio of maximum amplitudes of longitudinal and transverse 
electrical fields in the focal plane versus the focal length in Debye approximation. The part of the 
longitudinal components decreases at increasing of focal length. The longitudinal component 
possesses the larger divergence in comparison with the transverse component (Figure 5). 
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Fig. 5. The illustration of relative distribution of Ez (filled regions) and Er (curves) at the waist z=0 
(thick lines) and at the distance z=8w0 (thin lines). The focal distance is f=2.6w0. The scale 
of all curves is the same. 

7. Green function for non-paraxial ASP-beams. 

The vector wave equation (1) is transformed to the scalar equation for the azimuthally 
polarized beam:  
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The Green function of this equation can be calculated the following way: 
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This formula for non-paraxial beams is a generalisation of the expression (8). 

8. Conclusion 
The general solution for the ASP-beams consists of two independent solutions: an 

azimuthally polarized beam and a beam with longitudinal and radial components of field. 
Maximum of the longitudinal field is on the beam axis where the transverse component equals to 
zero. The ratio of maximum amplitudes of longitudinal and transverse components is of order of 
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λ/w0 (λ is the wavelength, w0 is waist radius). The longitudinal component does not contribute to 
beam divergence in the waist, therefore the wave front of ASP-beams is flat in the focal plane. 

Fraunhofer diffraction of ASP-beams on a ring slit gives a field distribution proportional to 
the first order Bessel function. The ASP-beams are free from polarization aberrations, which are 
inherent for linearly polarized beams passing through a lens with large annual aperture, and are 
prospective for experiments on obtaining “diffraction free” beams. 
 The formulae and their analysis for electromagnetic field in the case of sharp focusing of 
ASP-beams are presented. 
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