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A large class of diffraction problems can be solved on the basis of the Huygens principle. However, methods
of solving diffraction problems based on this principle exhibit narrow boundaries of applicability. The goal of
the present work is to offer a relatively simple physically based and mathematically strict “dipole wave” vector
theory of nonparaxial diffraction of electromagnetic radiation which allows analytical solutions of typical
diffraction problems. The suggested theory logically retains the wave approach used in the Kirchhoff method
and does not exhibit strict limitations to applicability inherent in the Kirchhoff integral. The diffraction prob-
lem is solved by using the Hertz vector in the Kirchhoff integral instead of the field vector. The method
efficiency is illustrated in several examples. Analytical solutions of diffraction base problems have been
obtained for linearly polarized radiation on an infinite slit and on various-shaped holes at an arbitrary angle of
incidence and polarization. It was shown the possibility of vector addition particular solutions to obtain
diffraction patterns from several holes. The diffraction of radiation with azimuthal and radial directions of
polarization on a ring slit is also considered. The main qualitative feature of the obtained solutions is the
presence of “poles” one or two points of zero field in the diffraction pattern which are superimposed on the
common system of light and dark fringes. The poles are located along electrical field vector directions. The
vector analytical formulas describing the propagation of some laser beams in the free space have been obtained
too. The solutions of the diffractive problems satisfy the Maxwell equations and the reciprocity principle.

DOI: 10.1103/PhysRevE.71.046608 PACS nuniderd2.25-p

[. INTRODUCTION the problem. The Kirchhoff integral is derived from two sca-
, , . lar wave equations, one of them being applied for the Green
The most common and strictest approach of solving difyction and the other for a field propagating in free space.
f_ractlon_problems IS the_ solution of the vector Maxwell €qUa-The scalar wave equation for the field does not contain any
tions with corresponding boundary conditions. Due 10 itSiyfrmation on changes of field direction in space. The equa-

gpﬁmmqnness,btlms ap;p;}roe}ch“s, '3 prlnclf:ple, ?Pﬂ"cab'ﬁ tg anEon for the Green function gives a formal solution for the
ifiraction problem. Physical and mathematical methods o jmplest spherical wave from a point source with uniform

such an approach are described in many textbooks a Id direction. However, existence of such a wave is impos-

monographs, for example, Ref§l-6]. However, major gio que to the transverse nature of the electromagnetic
mathematical difficulties with this method restrict the practi- a4

cal use of such solutions. So even formally strict solutions

. . . It.is known that the Kirchhoff-Kottler integral is the gen-
for diffraction on a round hol§7] cannot practically be used g g

eralization of the Kirchhoff method for the case of vector

biqaﬁs.e .Of the bad convergencelof the series in thﬁlform 'ﬁ‘elds[2,4,9]. The common idea consists of the scalar Kirch-
which it is presented3,8]. For solving concrete problems ¢ inieqral application to components of the field and in

they usually apply physical simplifications, approximate cal-, ey vector adding of the obtained solutions. Characteriz-

culations, and numerical methods. ing this empirical approach, the authors of a classical mono-

A number of methods of roughing solving diffraction h : hat i h hvsical inter-
problems on the basis of the Huygens principle are knowngrap [9] point out that it does not have any physical inter

. o . . retation and the solutions obtained on its basis do not
The semiempirical approaches used in these methods |mpo§stisfy the Maxwell equation di=0. All the drawbacks of
strict limits on their applicability.

The Kirchhoff hod f | ic field d . the scalar approach mentioned above are extended to the
_The Kirchhoit method for electromagnetic field descrip- kirchnoff-Kottler integral automatically. Therefore solutions
tion is the most famous. It uses the purely wave approach t

Bn this base are approximate; they are correct in the narrow
solving diffraction problems. Derivation of the Kirchhoff in- PP , ey

) ; . . zone of diffraction pattern description. The authors of Ref.
tegral is based on the wave equation and strict mathematic

0] considered in detail the famo aradox of classi
logic [2,4,9]. The Kirchhoff integral permits the diffraction ] siaerec 1 ! us paracox classic

field to b lculated usi he field i rparaxial approximation in the study of modes in spherical
leld to be calculated using the field specified at Some SUfg,qqr agonators. The solution for plane polarized mode has

face. Nevertheless, the area of the Kirchhoff integral appll'spherical wave front. This zero order approximation is con-

cability is ra_ther_ narrow. The reason for t.hese limitations i radictory to exact Maxwell equations. The first-order field is
purely physical in nature and is located in the statement o, ound to be a longitudinal field

We shall also refer to the so-called electrodynamical for-
mulation of the Huygens principle suggested by Kotf&}l
*Email address: niziev@yahoo.com The initial point of this theory is the introduction of “equiva-
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lent surface currents” found from the field specified on thegral written forZ contains the vector information on the field
diaphragm. of the diffraction pattern.

Kottler suggested11-13 the introduction of an addi- So, evaluation of the integral f@ is possible without any
tional contour(along the hole edgeintegral into the solu- approximations due to vector function inhomogeneity, and
tion. Kottler explained the necessity of this introduction bythe expressions for vector fiel#&sandH can be obtained by
the presence of electric and magnetic charges distributesimple differentiation. This approach is naturally extended
along the hole contour. Here we attempt to elucidate the fielfor the general case of arbitrary distribution of the field di-
distribution in the hole and thus expand the method applicarection on the aperturiel4].
bility. Nevertheless, this integral introduction cannot “com- The basis for solving the vector problem of diffraction
pensate” for the shortcomings inherent in the Kirchhoffunder linear polarization of incident radiation is provided by
method itself, i.e., in the scalar integral and in vector generthe Kirchhoff integral written for the Hertz vector:
alization.

This paper is aimed at the creation of a phys_|cally_Just|f|ed Zr)=| [G(n-V)Zy-Zyn- VG)]dS. (3)
and mathematically correct vector theory of diffraction that g
would use the logic of the Kirchhoff method and provide for
the analytical solutions of several basic diffraction problems. , ; . )
The scope of this theory is broader than the applicability Ofsqrfaces  Z(r) is the Hertz vector at the observation point,

the classical approach. The constraint on small solid angle! 'S @ unit normal to the given field surface on the aperture,
typical of the scalar approach, is not placed in this cas andG(r,r’) is the Green'’s function of the scalar wave equa-

Here,Zy(r’) is the Hertz vector distribution on the given

Although tasks with nontrivial boundary conditions at the 1N _ _

aperture are not considered in the present paper, the proposed™0r @ widespread case of a plane polarized wave on the

method using these conditiorfanlike the scalar Kirchhoff aPertureZo(r’) and Eq(r’) on S' surface are related by a

integra) allows correct solutions of the diffraction task at Simple expressioiq(r')=—k*Z(r'). Allowing for this, Eq.

small apertures. Some specific tasks on propagation of lasép) can be represented as

beams in space are solved. The obtained solutions are also 1

valid for small radii of the initial field distribution leading to Z(r)=- eoﬁf {
S/

the large anglénonparaxial diffraction pattern. d

d d
G—Ey-Ey—G|dS, 4
Eo~Eoy ] (4)
_ _ _ wheree, is a unit vector in the field direction ardfdn is a
A. Dipole-wave theory of diffraction derivative in the directiom, d/dn=n-V.

A mathematically correct and physically justified gener-  The technology of diffraction field calculation is now re-
alization of the Kirchhoff method for the diffraction vector duced to evaluation of the integral in expressigj writing
theory is presented by the approach that employs not th@f Z in vector form with the same unit vector as thgfield,
field in the Kirchhoff method, but the polarization potential, @1d to calculation of the field itself by formulad). The
or Hertz vectoiZ [2]. This approach is used, for example, in solution, obtained for the plane incident wai, permits

the antenna theory. As the fields found by the formula  the problem to be solved in the general case also.
We may conclude that the considered methodology of

E=V XV XZ H=ikV XZ (1) solving the diffraction problems presents some “physical”
method of scalarization. In the general case of a three-
dimensional vector field, the vector problem of diffraction
must be solved for linearly polarized radiation with regard to
each of the components. As stated above, this problem is
reduced to the scalar integral by using the Hertz vector.
These solutions satisfy the Maxwell equations, so the vectors
of diffraction fields from all the components can be added.
g itk We now discuss the applicability limitations for the con-
(2)  sidered method. A field with nondisturbed edges is employed
on the aperture as a specified one. This causes a “physical”
The polarization potential of the dipole wave is parallepto  restriction for the typical size of the hoke>\. The usual
and is transferred by a spherical wave. One of the two scalanathematical limitations in calculating diffraction integrals
equations used in the Kirchhoff method, i.e., the nonhomoexist for the wave zon&r>1 and for the hole siz&a>1,
geneous equation for the Green’s function, can be quite exhe latter being less strict as opposed to the limitation men-
actly physically interpreted when written fa:. It describes tioned above. Heré is the wave vectora is the typical
the emission field of a real point source of electromagnetiaperture size, andis the distance from the aperture edge to
radiation. Substituting Eq2) into Eqg. (1), in the wave zone the observation point. In all the below problems, a more
(kr>1) we obtain a dipole wav&, =0, E,=H,=-k’Zsin6.  stringent approximation af>a is taken, which permits the
Noting that the dipole wave polarization potential retainsanalytical relationships to be derived. Combining the limita-
its direction at different points of space, we can use the scalarons forr anda, we can write in our calculations>a> \.
equations applied td in the case of linearly polarized radia- A key condition largely affecting the possibility of this
tion falling on the aperture. Here the Kirchhoff scalar inte-method of practical applicability is the transformation of the

automatically satisfy the Maxwell equation d&=0, the in-
ner contradiction inherent in the common Kirchhoff method
is lacking in this approach.

The expression for the electromagnetic field of emitting
dipole p=pg exp(—iwt) is derived from the solution of the
wave equation with the source in the form of dippkd

Z=P0 p
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Z(I‘) - — ionf eikX' sin 6
k S’

% Gi,eikz’ cosfp _ gikz’ cos ooi’G ds .
Jz Jz

z zA In the two-dimensional case considered here, the Green’s
9 K, 0 K, function is expressed through the asymptotic approximation
y ’ of the Hankel function of the first kind of the zeroth order:

—

i ; /7/}/// E G(Klp-p'l) = ge“”"‘i

vr o Kp-p'|

FIG. 1. Two possible directions of field on the aperture at non- ’
zero angle of incidenceda) field vector in plane of incidenceb) lp—p'| = V(x=x)2+(z-7)?,
field vector perpendicular to plane of incidence.

wherep is the radius vector directed to the point under con-
sideration. Having performed the differentiation under the
integral and setting’ =0, in the wave zonkp> 1 and for the
caseAx< p we obtain

initial distribution of the field on the hole to the Hertz vector
initial distribution. The general approach suitable for any
given field distribution is hardly possible in this case. Below,
the problems are solved which cover some particular cases: — \,E o _dr sin y
plane linearly polarized wave, and radially and azimuthally Z=-i-=€""S—=(cosf,+ cost)—*=,
polarized radiation. A more general case can be also men- v P X
tioned when the initial field shows linear polarization and the _
field amplitude distribution is such that everywhere X = AX(sin 6= sin ). ©)
VEOL. Eo. Here we can use the decomposition of the fieldHere we passed to the coordinageand 6. The dimension-
amplitude on the aperture into plane waves, and the f'elﬁjess arameters have also been entered:
direction coinciding withEy can be ascribed to the scalar P ’
components of decomposition. The general solution of the - K —= _ o
problem is obtained by integrating with respect to the wave Z= ZE' S=2kAXx, Ax=kAx, p=Kkp.
vector of the solution obtained for a plane wave. 0
Section V is concerned with a way of solving the prob-  This approximation is essentially different from that of
lems of diffraction from several holes that employ the addi-Kirchhoff, as it does not impose any applicability limitations
tivity of mathematical transformations used in the methodon the angle and contains the information on field direction
under consideration. The propagation of laser beams in spaeg different points depending on the direction of the initial
is considered in the last section. field. Expression5) has been derived from the scalar inte-
We offer several examples to illustrate the application ofgral and is valid for any initial field direction. It goes without
the suggested method. In all the cases the surface coverirsgying that the expressions for the diffraction fields will dif-
the apertureS’ is taken to be flat irx-y coordinates, and the fer according to the initial field direction, and henge
vectorn in formulas(3) and(4) is directed along axig. The If the field E, is perpendicular to the plane of incidence
planex-z is the plane of radiation incidence. In diffraction (Eplly), we haveZ =Z(x,z)j in the vector form. The calcula-
from the slit or various form holes, two directions of field are tion of the field from formulg1) was carried out in Cartesian
possible(Fig. 1): in the plane of radiation incidende) and  coordinates.
perpendicular to ith). On this basis, solutions for any field The formulas for evaluating the magnetic and electric
direction can be obtained. fields (1) are considerably simplified. The procedure of tak-
ing the derivatives is also rather simple if we consider their
order of smallness from the different multipliers in formula
(5). Because of the factok=2#/\, the derivative of the
Let us consider a plane linearly polarized wave incident teexponential with respect to the coordinate is maximum on
the slit (Fig. 1) in the planex-z at the angle ofg, to thez  the order of magnitude. The same factor appears in the de-
axis: rivative of y, but this time with the coefficienAx/p that is
small on the order of magnitude. That is why the second
derivatives ofZ with respect to the coordinates, which are
needed in calculation d&, have a very simple form

B. Diffraction of radiation from an infinite slit

Eo= eoEoeik-r - eoEoeikx’ sin fogikz’ cos by

The time factore™*! is omitted for brevity andg, is a unit d X J oz
vector in the field direction. The vect@ (4) has the same a_xZ= —ik=z, —Z=-ik-Z
) L . . . - . p Jz p
direction in all the points that coincides witg, direction.
The scalar integrald) is evaluated by a standard procedure.Then, allowing for Eq.(5) we rewrite the formula foE in
In our case, substituting, and G, we can write it as the final form
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(a)

[~ iy

2 —¢lp sin
%e"”/4EOS—/jcos 6, + Cc0S6) —Xj , (6)
N \Jp X

E=Z=-i

(b)
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FIG. 2. Scheme, designations,
and pattern of linearly polarized
light diffraction from an infinite
slit, synthesized by calculation.
The diffraction field direction is il-
lustrated by(a) and(b) at any field
direction on the slit. The angle of

x=AX(sing-singy), S=2kAx, Ax=kAx, p=Kp.

incidence is zero.

field vector, and exhibit a slight difference in field amplitude
for the two considered polarizations of the beam. With dif-
fraction from a slit cut in a nontransparent screen, we cannot
formally place strong emphasis on the qualitative differences
in the diffraction pattern at large angles where (69)

Expression(6), quite understandably, is identical to that | view of the above stated the approximation of a non-
obtained from the usual scalar Kirchhoff integral. Only in gisturbed field on the aperture confines the hole size from
this unique case the usual method gives a solution satisfyinge|ow to, at least, several wavelengths. The intensity of the

the equation diE=0, since the diffraction field has every- gifraction pattern therewith sharply falls when the polar

where the same direction alongas the initial field, i.e., it

angle is increased, and at large angles the field is practically

only possesses one component, and this component is nNgkrq with any polarization. However, if the slit is regarded as
dependent oly by virtue of the problem two-dimensionality. a5 element of wave front not restricted by a screen, the limi-

Accordingly, for the fieldE, in the plane of incidence
(EoLy), the polarization potential has the ford=2(x,z2)
X (i cosfy—k sin 6y), and formula(l) yields the following

expression for the electric field=E, coq - 6y)Ze,. So fi-

nally we obtain

E=Zco96- 6yey=—i

x = Ax(sin 6- sin 6y), S=2kAx, Ax=kAX,

p=kp,

V2

NT

sin
Xcog 60— 60)—)(e(,,
X

e,=icosf—jsiné.

| ) _e|;
=€ ™E;S—=(cos b, + cos6)
Vp

)

tation on the slit size can be removed. In this case there is no
need to account for the edge conditions in consideration of
the field diffracted “along the screen” owing to its absence.
The general propagation pattern for a wave with the specified
distribution atz=0 will be found as the result of vector su-
perposition of the fields diffracted from the front individual
regions obtained by summing or integrating the correspond-
ing expressions. The qualitative peculiarities of diffraction
for any kind polarization may be essential here.

Figure 3 illustrates the distributions of field amplitude cal-
culated by formulagl14) and (15) for an angle of incidence
30°. A characteristic feature of the caSg L y is the presence
of an additional zero-field point &= 6,— /2 [see formula
(7)]. This “pole” is located along the field direction at 60°.

Based on the obtained expressigfs and (7), it is pos-
sible to revise the formula for the simplest diffraction grating

The direction of the diffracted field found from formula formed by parallel slits cut in a nontransparent screen. It is
(7) is illustrated in Fig. 2. In any case, the formulas give aknown that the formula for the light that had passed through
correct, perpendicular to the wave vector, direction of thesuch a grating has two terms: a term for single slit diffraction

IEImax=1

|E] (arb. units)
o
N

| E,llslit
0.1 0
E, L slit

FIG. 3. Diffraction of a linearly polarized
field on an infinite slit at two directions of polar-

N

% [

I

ization and with slit width 1. The angle of in-
cidence is 30°.

—

90 60
0 (degrees)

30

60 90

0 (degrees)
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and an expression related to the collective effect of diffrac- Lo _

tion from many slits. The formula for this grating will then I(,0)= | €k snfgkrgs,

take into account the polarization of radiation. If there is s

some distribution of the given field amplitude, the diffraction  Wwhile taking the integral in Cartesian coordinates, we
pattern can be calculated through the Green’s function, bynhyst write

the solution.

In an arbitrary distribution of the specified fielH,
=Eq,i +Eq,j +EqX, it must be resolved into two components
Eox-z=Eoxi +Egk and Eq =Egyj. Making use of expressions
for the infinitely small slit, we can write the general solution
to the problem as

! !

. X . .y
u=siné COS(,DT +sinédsin (pT.
The integral takes the form

= | ((p, 9) = f f eik(sin Op=sin 6 cos<p)x’e—ik sin 6 sin "Dy’dX'dy' ]
| kp S/

2 . €
E=- ik\,—_e"”"‘?(cosao + cos6)
N Vkp (10
%2 o , On taking the integral in polar coordinates, the substitution
x| egcog 6= 0) f Eox-2(Xo) €SI fo7sin D%ogjy, must be made:
X1
2 i :p—,s'necos cose’ +singsing’
+ eyf Eoy(xo)elk(sm Og=sin a)xodxoi| ) (8) u ; in 6( ¢ ¢ ing sing’)
Xl ,
p H ! |- ! I
Consider the example =0, Ey=0, Eg., = sin gcofep-¢'), X =p’cose’.

=E, coqmxy/2a). The specified field is different from zero
for —a<xg<+a. A simple calculation of the integral8)  Then the following expression for the integral is derived:
gives the following formula for the diffraction field in this

case as well: |(¢ 0) — J J eikp’[sin 6o cos ¢’ —sin 6 cos ¢ cos ¢’ —sin 6 sin ¢ sin ¢’]
, a2 &
E=- |kaEO%_3e"”’4T(1 + cosf)e, cog 6) Xdp'de'. (11
VT Vkp
) Thus, the Hertz vector is found from formu(8) with an
XM_ integral similar to those of Eq10) or (11). Recall that the
1- 16a_2 in direction of the Hertz vector is the same as the field direction
\2 sin on the hole.

In calculation of the field by formuldl), consider two
main directions of the field falling on the aperture: in the
C. Diffraction of linearly polarized radiation from holes plane of incidence and perpendicular to it. Here, as well as in
the case of a slit, the procedure of taking the derivatives in
calculation of the rotor is not tedious if we take into account
the smallness of the derivatives taken from the multipliers in

The initial integral for calculatingZ is written for the
three-dimensional problem

gklr=r'| 7 formula (9).
Z= —iEof ghx’ sin 6 <c0560+ —)ds‘. The final expression for the field can be written as fol-
s Klr =r'| r=r’| lows:

The Green’s function here has the form . e
E=- |EOT—(00590 +cos)l (¢, 6)q(e, ), (12
eik|r—r'\

B Kr—r'|’ wherer=kr and (¢, 6) is found from formula(10) or (11)
and specified by the hole shape, and the form of the vector
The formulas for approximated calculations in termsi@re  function q(¢, 6) depends on the field direction on the hole
identical to the stated above decomposition witbubstitut- (see Table)l
ing forr, though the formula fou has another form as inte-  The solution for any direction of the field vector on the
grating is now performed with respect to two coordinates: aperture can result from the vector addition of the solutions
for Eglly andEg Ly. In the case of a rectangular hole, the

= >2(X +2yy 5= XX +2yy = Uy + Uy. field is found from the formula
X2 +y?+7 r _
) Ir sin x5 sin
As a result, we arrive at the integral E = —iEoS—(cosfy + cosf)—2——2q(g,0), (13)
r Xa Xb
i ikr
Z=—--Ey(1+coshcosby)—I(qp,0), 9 — . . — . .
k of 0 r (¢.6) © Xa=a(sinfcosp—-sinfy), xp=bsinésing,
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TABLE |. The vector part of solutions of

PHYSICAL REVIEW E71, 046608(2005

diffraction tasks for two directions=gf

Field Eg Vector Z Vector q(¢e, 6)

Eolly Z=Z-g, €ycosfsinp+e,Cose

Eoly Z=Z(e,cosby—e,sin bp) €4(Sin #'sin y+CosH COSp COHy) —€, SiN @ COHy
S,=4ab, a=ka, b=kb T=kr, '

where 2 and D are dimensions of rectangular hole along
andz axes, correspondingly.
For a rombolic hole obtaining the expression for the field

+
o sina 'Bsmaz'g
E = -iE;S—=(cosb,+ cosh) q(e, ),
r a+ B -B
2 2
(14
a=kc(sinfy—sinfcosg), B=kdsinfsing,
S=2k%cd.

2c and & are diagonals of rombolic hole alomxgandz axes,
correspondingly.

E,)=i(1+cosf)—[e,cosfsing +e, cose]
r

Xf 27Tr_0E0y(H))J0(r_0 sin H)dTo, (18)
0
o
Ex =i(1+cosf)—[e,cosfcose—e,sing]
r
0

The usual definitiong =kr, ro=kr, are used here. The
diffraction fieldsE(y), E(x) from the specified field compo-
nentsEg, and Ey, must be added with regard to the compo-
nents. The resulting diffraction field possesses two compo-
nents, polar and azimuthal.

In the case of a circular hole, we should start with the D. Discussion of calculation results for diffraction from holes

integral (11). We deduce the following expressions for the
Hertz vectorZ and the electric fieldE:

LM )Q(so.ﬁ)

e
E=- 2|EOS—(cos 6y + cOSH)— (15

O

M = \/(sin 6o — sin 6 cos)? + (sin 6 sin ¢)?,

SO =
r is the radius of a hole.

Having prescribedE,=E,8(r' —r,) we can deduce the for-
mula for the Green’s function that would permit the diffrac-
tion field to be calculated from the specified front with an
arbitrary radial distribution of the field. We restrict ourselves
to the case where the angle of incidence is zero.

If the given field is directed along thgaxis, the expres-
sion for the Green’s function for electric field takes the form

eikr
GE, =iEq(k?2mr)(1 + cose)

wrg, T=kr, To=krg.

Jo(kro sin )

(16)

When the given field is parallel to theaxis, we obtain
ikr
GEy = iEq(k?2mr)(1 + coso) Jo(kro sin 6)

X[eycosfsing+e, COSQD].

X[eycosf cose - e, Sing].

(17)

With an arbitrary distribution of the specified field,
=Eqd +Egyj using expressiongl6) and(17), the solution of
the problem can be written as

The results obtained feature the “poles” in the diffraction
pattern, i.e., the points of zero field, located along Eye
direction. ForElly, two such points can be seen, their coor-
dinates beingp=x /2, =1/2. With Ey L y there exists one
“pole” (¢=,0=m/2-6;) in the observation hemisphere
(Fig. 4.

The emergence of “poles” is assigned to the expression
q(6,¢), and its form does not depend on the hole shape.
Figure 5 depicts the distribution of field amplitude over the

z)

FIG. 4. Emergence of a “diffractive pole,” a point of zero field,
at oblique incidence of radiation on the slit, and witk located in
the incidence plane.
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be used in resolving the initial field into the vector compo-
nents, though bearing in mind that a linearly polarized initial
field yields the diffraction field that is variously directed at
different observation points. The diffraction from several
holes can be considered in a similar way.

Primarily, the results must be generalized in the case of a
random location of the hole in the screen relative to the ori-
gin of the coordinates. It gives an additional multiplier in the
solution, describing phase distribution in the observation
hemisphere. This phase distribution is associated with the
asymmetrical location of the hole in the initial coordinate
system. This multiplier has the form

— alk[Xg(sin 6p—sin 6 cos ¢)-yq sin 6 sin ¢]
FIG. 5. Distribution of field amplitude under linearly polarized F(¢.6,80.%0.Yo) =€ ’ ’ - (20

radiation diffraction from round and square holes in the coordinatgt does not depend on the hole shape and incident radiation
system of polar and azimuthal angles. The round hole radius and thgo|arization and is entered into all the finite formulas. So, for

square side makeNé The angle of incidence is 15°. The main peak example, formula15) for the circular hole displaced from
amplitude is normalized to a unit; the peaks in the figure are cut OfEhe origin byxo, Y, takes the form

at the level of 0.3.

ir

—-"
— _ = otV
hemispheres, ¢ in diffraction from the circular and square E= Z'EOSr—e €7 (cosy + cosO)F(e, 0, 65, %o, Yo)

holes. The angle of incidence is 15°. The distinctions of dif-

fraction patterns for different polarization directions, at xmq( 0). (22)
rather large holes, are not visually distinguishable. oM '

The formula for light diffraction from rectangular and cir-
cular holes, derived from the electrodynamical formulation

of the Huygens principle, gives no description of the “poles” . . .
related to the direction of thg, field vector. The formulas ference in phases of the beams falling on different holes.

derived in this paper are different from the known ones. Theﬁinoegggi” ;?.::gg'ﬁ]nstzjiu;gnjn?f E)Ze'ndlflhr;]aeceilr(l)n f(')el(!fr.og d
not only offer the qualitative features of diffraction pattern, vall ISP y beng i y polarized,

but also provide for quantitative refinement of the field am_they also have circular or elliptical polarization in different

plitude distribution over the diffraction pattern. Exact quan-po'lrf‘ttsr'] hol re of th me size and svmmetrical about
titative information is of great importance in this case, such 1€ holes are of tné same Sizeé and symmetrical abou
as, for instance, the fact that the direction of maximépof the origin, th_e res_ultant _formula is simplified, and the ph_ase
the diffraction field is distinct fromd,. The difference, of the resulting field will be constant on the observation

- 6, depends on the angle of incidence and can reach seve ?mlsphe(e. By way of example, consider the Q|ﬁract|on
degrees. rom six circular holes evenly spaced along the circleRof

The solutions of some diffraction problems obtained byradius. The h_oles undergo the action of the plane wave. The
the method of electrodynamical formulation of Huygensgeneral solution has the form

Here, for generality, we reproduced the time multiplier
and entered a random phase shHfftthat allows for the dif-

principle are not in agreement with the reciprocity principle. .

This discrepancy is typical of the problems where the surface E = - 2IE;S—€“!(cosfy + cosO)(Fy + F, + Fy)
currents are prescribed by the formula(c/27)n X Hy,. r

Concerning the outlined method, all the above solutions are J1(roM)

consistent with the reciprocity principle. With=0; 7, the XT()—Mq(¢’0)' (22

angleséd and 6, are interchangeable.
F, corresponds to the first pair of holes located alongxhe

axis:
E. Superposition of solutions at the diffraction

from several holes F, =2 cogkR(sin 6, — sin cos¢)},

The vector solutions obtained for the diffraction from in- £, and F correspond to the other two pairs of holes
dividual holes allow the diffraction pattern to be described in _
the presence of several holes. This can be performed through R . ) V3R . .
vector addition of the fields arriving at the specified point F2.3= 2 CO{ k{g(sm fo — sin 6 cose) + 5 SN fsin ‘P} }
from different holes. The paramete(polarization, ampli-
tude, relative phase shift, and angles of incidgngethe  Figure 6 presents the results of calculating the diffraction of
waves falling on the holes can be either identical or differenta plane polarized wave from six circular holes, performed
Formally saying, allowing for the features of the em- with formula(22).
ployed mathematical operations, we can indicate that the op- For the two holes located along tixeaxis atR distance
eratorE=L(E,) is capable of additivity. This approach can from the origin, the formulg21) includes
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FIG. 6. Diffraction of plane polarized wave from six round
holes. The field amplitude lies in the coordinates of azimuthal and
polar anglegFig. 5. The hole radius is,=5\. The distance iR
=20\. Angle of incidence is zero. The main peak amplitude is nor-
malized to a unit; the peak in the figure is cut off at the level of 0.1.

F(e, 0, 00,%0,Yo) = 2 codkR(sin 6, - sin 6 cose)} FIG. 8. Diffraction from two round holes. The field amplitude
lies in the coordinates of azimuthal and polar andkg. 5. The
for the case of zero phase shift and hole radius igo=3\. The distance from the origin to hole center is

R=5\. The angle of incidence on the holes ia tv=5° at the top,
a=15° at the bottom
F(¢, 8, 0y,%0,Yo) = — 2i sifkR(sin , — sin 6 cose)},
have the same direction, but differ in amplitude and phase. It
when the field oscillations on the holes are out of phase. Thean be convincingly indicated that the resulting diffraction
diffraction field for these two cases is shown in Fig. 7. field is linearly polarized at any point.

The following figure(Fig. 8) illustrates the calculation of |f the field vectors falling on the holes are in the plane of
the field amplitude distribution for diffraction from two cir- radiation incidence, they are not parallel and form the angle
cular holes, when radiation falls on them at different angley. In this case, the diffraction fields at any point away from
ta. From the two figures, for=5° (top) and @=15° (bot-  the two holes are different not only in amplitude and phase,
tom), how the diffraction pattern evolves with the increase ofput in direction as well. The resulting fields diffracted from
the incidence angle can be inferred. Analyzing the case schehe two holes can be linearly or elliptically polarized at any
matically presented in Fig. 8, we let the planes of radiatiomoint of the observation hemisphere.
falling on the holes coincide, the angles of incidence being
equal but differing in sign. _ ) _ _ ) o

If the vectors of the fields falling on the holes lie in the F. Diffraction of azimuthally gnd radla]Iy polarized radiation
plane of radiation incidencghe field vectors being paraljel from a circular slit
the diffraction fields at any point away from both the holes  \odes with azimuthal and radial polarization are well
known in the theory of waveguides and open resonators. Let
us consider diffraction of light with this polarization from a
circular slit. We shall restrict ourselves to the case of a zero
angle of incidenc&,=0.

For an azimuthally polarized radiation assuming that
within the circular apertur@,=Z,e*%,, it is readily shown
by directly substituting into Eq(6) that the relationEy(r’)
=-k?Z(r") holds here, too. The calculation of the Hertz vec-
tor is reduced to the integral

i gk T ,
Z= EEO(l + cosﬁ)TJ f n e k' sindcosemeDr dordr’,
" Jo

Having writtenn,=-n, sin ¢+n, cose, we arrive at the sca-

lar integrals
FIG. 7. Diffraction of plane polarized wave from two round i ikr
holes. The field amplitude lies in the coordinates of azimuthal and Z,=-n,Ey(1 +cosf)—
polar anglegFig. 5. The hole radius iso=5\. The distance iR K r
=20\N. Angle of incidence is zero. The main peak amplitude is nor- 27
malized to a unit: the peaks in the figure are cut off at the level of xf f sin @’ ek’ sin 0 cose=¢ g gy’
0.2. r'Jo
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glkr It is convenient to decompose the obtained expression

i
Z,= nyEEo(l + C0s6) into two parts, a field in the meridional direction and a field

along thez axis. The latter has a phase shiftof2:

2
XJ f COS(,D/ e—ikr' Sin0coi<p—(p’)rrdqp/dr/- eir_
v Jo GE = k?Eg27ro—(1 + cosé)cos 63, (kr, sin 6)e,,
r

r

Using further the known transformatiopal1] and represent- (24)
ing the initial field asEy,=E,8(r'—ry), we obtain for the
Hertz vector _ . .
T ikr Jy(krgsin )
i GE, = ik?*22Ey27ry— (1 + COS#)cos f—— =
e z R ( ) kro sin 6

e
GZ =g, Eq2mry(1+ cosﬁ)WJl(kro sin6). 25

The field distribution from formula&4) and(25) is given
in Fig. 10. The purely longitudinal component of the field
ikr ) (25) is small in magnitudédue to the factory/r), but the
GE = e k*Eg2mTo(1 + COS@)WJl(kro sinf). (23 maximum of the field is on the axis, where the meridional
componen{24) is zero. In addition, the longitudinal compo-
Along the polar axis, fo#=0, the field is zero. The mag- nent is phase shifted by/2 relative to the meridional field.
nitude of the field along the screen, fér /2, depends on The magnetic field possesses only an azimuthal component
the slit radius and may or may not be zgiig. 9. The  and “forms” a radial wave vector of the spherical wave to-

In this case, the field is conveniently calculated by formula
(1) in spherical coordinates. It takes the form

general solution foEy(rg) is determined by the integral gether with the in-phase meridional component of the elec-
o [ tric field. As for the field longitudinal component, it exhibits

E=e,(1+ cosa):f 21 oEo(T0)J (1o Sin O)dry, a /2 phase shift with respect to the magnetic field, thus the

rJo time-averaged wave vector, related to this component, is

Zero.

where, as usual,=kr, ro=kr. The general solution fdE(r ) is found from the formulas

In the case of radially polarized radiation the solution for

the Hertz vector has a similar form: g °°
= E,=e,—(1 + cosf)cosh
7 ) gkVp?+Z r

p
; , Ji| krg—=——==|e,.
\r’p2+22 kvp + 72 1( O\’p2+22> P

2711 oEq(r)J1(rg Sin 6)dry,
0

GZ= E0(27Tr0)(1 +

o€’ c Ji(rgsin@
The above form has been adapted to calculation of theEzzlez?—OT—(l"’COSt‘))COS@f ZWroEo(r_o)%dfo-
electric field (6) in the cylindrical coordinate system. The 0 0
calculation results in the following formula: Undimensional notations=kr, To=kr, are applied here.
alkr The above conclusions with regard to the meridional and
GE = K’Eg27rg— (1 + cos6)cos 8J;(r Sin 6) longitudinal (along thez axis) components of the field are to
kr full measure extended to the general case.
x{cosﬁe,ﬁ {_ I -sin H]ez}.
rsiné G. Propagation of laser beams in space

For convenience, we have here introduced natural notation in Now we illustrate on several examples the applicability of
terms ofr =\p?+2z° and the polar anglé measured from the the Green function expressions to calculate of the formulas
vertical axis. describing the propagation of some laser beams in space. The
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= = FIG. 10. Diffraction of a radially polarized

= E,=E-n, = E,=E-n, field on a narrow ring slifro=2\). The left pic-
05 05 ture is the field component directed along merid-

component directed alorgaxis E,. The longitu-
dinal and meridian components of the field are
displaced in phase by/2. The relative scale of
W the two curves is not in agreement.
0 0
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\ ian Ey, the right picture is the field longitudinal

general method to solve these problems is as follows. It is For the field having azimuthal polarization, we must ap-

suggested that the field distribution over the laser beam waigtly formula (23), substitute the expression for the field into

(wave front is flat and phase is constaistknown. Employ- it, and perform an analytical taking of the integral. We obtain

ing the expressions for the corresponding cases, we calculatee final formula

the diffraction field at large distancéas against the typical

size of the specified fieJdhat governs the law beam propa-

gation. In accordance with the general approach, the ob- ir )

tained solutions have a vector form, and they do not have th& = e‘PEOT_(l + cosd)sin oe”

paraxiality restriction that is typical of the classical formulas

of Gaussian beam propagation. Consider the specified field having radial polarization.
Consider the principal mode of Laguerre-Gaussian beamsiaving performed a similar calculation employing formulas

Take for certainty that the specified field is linearly polarized(24) and (25), we come to the following expressions for the

and the field vector is directed along thexis. It is required field meridional and longitudinal components:

that the field distribution corresponding to this mode be sub-

stituted in formula(18):

WGOsSI™ 0 T=kr, W=k,

ir

e o
21 E, = e,Eq—(1 + cosf)cosd sin g WoAsIT 0
E.=\/——€T70, Ry=riwg r
7TWO

and the integral using the known formula2) be taken as
_ e"_W P
/21 e" , E, = eiEq——2(1 + cosf)cos fe"WoAsIT
E:I\/iW(l+C0$0):[60COSQSIn(p+e‘p cosg] SR ( )
™ Wp r
- Both in this case and in considering diffraction of radially
Xf zwr()e—%/k%JO@ sin )dr,. polarized radiation through the circular slit, the field longitu-
0 dinal component is small compared with the meridional field,
. . . ) . . but the maximum of this field is located at the axis where the
The simple transformations yield the final expression giv-

. - . .97 field meridional component is zero. The longitudinal compo-
ing a vector description of the Gaussian beam propagation ifa of the field is also shifted by/2 with relation to the
spherical coordinates: meridional field.

o The last example concerns the propagation of Bessel

E = Eo(1 + cost) —[e,cosfsing beams. Consider the case of the limited aperture of the initial
r field described by the Bessel zero-order function. A circle

+e,cos (p]e—(ﬁom)sinz 0 T=kr, presents the aperture boundary. The given, but arbitrary num-

ber of zeros of the Bessel function, is brought into the aper-
o ture: E;~Jo(anr/ry), r<r,. Herer, is the beam aperture
Wo = kwp. radius including all zeros the Bessel function umtb. The

The vector formulas for propagation of beams having aziumerical chtoran is. consistent with the argument of the
muthal and radial polarization can be obtained in quite a]BesseI funqnor_l at this ZEIO=Ty. Let the specm_ed f'el.d have
similar way. The specified field distribution for the lower inear polarization and be directed along thexis. As in the

TEMp» mode is described in these cases by the formula case .Of a Gaussian beam, we ;hould_apply forniLéi but
substitute the Bessel function in the integral. Here also the

21 -~ 5 integral is analytically taken by using the formyis3). The
E.= —VT(\"ZRo)e_RO, Ro =r/wg. calculation results in the formula
™ Wo
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i ) base solutions for the vectors of the initial field being parallel
E=Ey(1+ COS@)T—[ea cosfsing + e, cosg] and perpendicular to the plane of incidence. On plane wave
incidence at a long distance from the aperture, the analytical

(ay)? . vector expressions have been obtained for solving basic tasks
(a,)%— (r.sin )2 Jo(rpsin6), of diffraction. The problems of linearly polarized radiation
diffraction on an infinite slit, on holes of different forms, and

%Jl(an) if T, sin0— a,, on several holes have been considered. The problems of dif-
2 fraction of azimuthally and radially polarized radiation on a

ring slit were also studied. A qualitative feature of the ob-

r=kr, r,=kr,. tained solutions is the presence of “poles,” points of zero

i field which are superimposed on the common diffraction pat-

At the large distances af>r, the character of Bessel (o consisting of light and dark fringes. The vector analyti-
beam propagation alongdiffers not at all from the propa- .| formulas describing propagation of some laser beams in
gation of other beams. The features obtained in R} for o0 gpace are obtained by the Green's function method.
such beams do not take place in this case. The discuss§iese solutions do not have paraxial approximation restric-

general case involves the propagation of the waveguide lasghns The solutions satisfy the Maxwell equations and the
principal mode in free space. This mode is described by th?eciprocity principle.

zero-order Bessel function and is limited by the tube walls in
accordance with the first zero of Bessel function. In this case,
n=0,29=2.405. APPENDIX
Il. CONCLUSION Analytically taken integrals used for gettingearching

. . . . solutions of diffractive tasks.
Consideration has been given to the method of solving

diffraction tasks that is based on the Hertz vector application . . " )
in the Kirchhoff integral. For this approach, there are no sin(ng)exiit cod B - y)]dg = 27 J,(B)sin(ny),
stringent limitations to applicability, inherent in the scalar

Kirchhoff integral and its vector generalization written for o

the field. The method is physically sequential and math- ; _ — 5N

ematically correct, and does not exhibit inner contradictions; fo codnBjexiit codf - 9)Jdp= 2" y(t)cosny),
it presents a full vector approach and is technically simple.

2

The search for a solution involves two stages. The first stage, (AD)
calculation of the Hertz vector, is equivalent to taking the . , 5
diffraction integral of the well-known class. The second e @] (Bx)dx= B exp(— E) (A2)
stage consists in field calculation. Here, the operation of tak- 0 (2a)"*t 4
ing the curl is essentially simplified, if the order of summand
smallness is allowed for taking the derivatives. The solution r
_ r 14 s, ) n arpJy(ar ) Jo(Bry)
is dependent on polarization, but at any direction of linear f rdo(ar)Jdo(Br)dr = o) . (A3)
polarization on the aperture it can be derived from the two 0 o - pB
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